
1

UNIX & SHELL

PROGRAMMING

MCA 204

SELF LEARNING MATERIAL

DIRECTORATE

OF DISTANCE EDUCATION

SWAMI VIVEKANAND SUBHARTI UNIVERSITY

MEERUT – 250 005,

UTTAR PRADESH (INDIA)

2

SLM Module Developed By :

Author:

Reviewed by :

Assessed by:

Study Material Assessment Committee, as per the SVSU ordinance No. VI (2)

Copyright © Gayatri Sales

DISCLAIMER

No part of this publication which is material protected by this copyright notice may be reproduced

or transmitted or utilized or stored in any form or by any means now known or hereinafter invented,

electronic, digital or mechanical, including photocopying, scanning, recording or by any information

storage or retrieval system, without prior permission from the publisher.

Information contained in this book has been published by Directorate of Distance Education and has

been obtained by its authors from sources be lived to be reliable and are correct to the best of their

knowledge. However, the publisher and its author shall in no event be liable for any errors,

omissions or damages arising out of use of this information and specially disclaim and implied

warranties or merchantability or fitness for any particular use.

Published by: Gayatri Sales

Typeset at: Micron Computers Printed at: Gayatri Sales, Meerut.

3

UNIX & SHELL PROGRAMMING (MCA - 203)

Unit-1 Introduction

Introduction to Unix, Unix system organization (the kernel and the shell), Files and

directories, Library functions and system calls, Editors (vi and ed).

Unit-2 Unix Shell programming

Types of Shells, Shell Metacharacters, Shell variables, Shell scripts, Shell commands,

the environment, Integer arithmetic and string Manipulation, Special command line

characters, Decision making and Loop control, controlling terminal input, trapping

signals, arrays.

Unit-3 Portability With C

Command line Argument, Background processes, process synchronization, Sharing of

data, userid, group-id, pipes, fifos, message queues, semaphores, shared variables,

Introduction to socket programming.

Unit-4 Unix System Administration

File System, mounting and unmounting file system, System booting, shutting down,

handling user account, backup, recovery, security, creating files, storage of Files, Disk

related commands.

Unit-5 Different tools and Debugger

System development tools: lint, make, SCCS (source code control system), Language

development tools: YACC, LEX, M4, Text formatting tools: nroff, troff, tbl, eqn, pic,

Debugger tools: Dbx, Adb, Sdb, Strip and Ctrace.

4

Unit-I

Introduction

Introduction to Unix

UNIX is an operating system which was first developed in the 1960s, and has been

under constant development ever since. By operating system, we mean the suite of

programs which make the computer work. It is a stable, multi-user, multi-tasking system

for servers, desktops and laptops.

UNIX systems also have a graphical user interface (GUI) similar to Microsoft Windows

which provides an easy to use environment. However, knowledge of UNIX is required

for operations which aren't covered by a graphical program, or for when there is no

windows interface available, for example, in a telnet session.

Types of UNIX

There are many different versions of UNIX, although they share common

similarities. The most popular varieties of UNIX are Sun Solaris,

GNU/Linux, and MacOS X.

Here in the School, we use Solaris on our servers and workstations, and

Fedora Linux on the servers and desktop PCs.

The UNIX operating system

The UNIX operating system is made up of three parts; the kernel, the shell and the

programs.

The kernel

The kernel of UNIX is the hub of the operating system: it allocates time and memory to

programs and handles the filestore and communications in response to system calls.

As an illustration of the way that the shell and the kernel work together, suppose a user

types rm myfile (which has the effect of removing the file myfile). The shell searches the

filestore for the file containing the program rm, and then requests the kernel, through

system calls, to execute the program rm on myfile. When the process rm myfile has

finished running, the shell then returns the UNIX prompt % to the user, indicating that it

is waiting for further commands.

The shell

5

The shell acts as an interface between the user and the kernel. When a user logs in, the

login program checks the username and password, and then starts another program

called the shell. The shell is a command line interpreter (CLI). It interprets the

commands the user types in and arranges for them to be carried out. The commands

are themselves programs: when they terminate, the shell gives the user another prompt

(% on our systems).

The adept user can customise his/her own shell, and users can use different shells on

the same machine. Staff and students in the school have the tcsh shell by default.

The tcsh shell has certain features to help the user inputting commands.

Filename Completion - By typing part of the name of a command, filename or directory

and pressing the [Tab] key, the tcsh shell will complete the rest of the name

automatically. If the shell finds more than one name beginning with those letters you

have typed, it will beep, prompting you to type a few more letters before pressing the

tab key again.

History - The shell keeps a list of the commands you have typed in. If you need to

repeat a command, use the cursor keys to scroll up and down the list or type history for

a list of previous commands.

Files and processes

Everything in UNIX is either a file or a process.

A process is an executing program identified by a unique PID (process identifier).

A file is a collection of data. They are created by users using text editors, running

compilers etc.

Examples of files:

a document (report, essay etc.)

the text of a program written in some high-level programming language

instructions comprehensible directly to the machine and incomprehensible to a casual

user, for example, a collection of binary digits (an executable or binary file);

a directory, containing information about its contents, which may be a mixture of other

directories (subdirectories) and ordinary files.

The Directory Structure

6

All the files are grouped together in the directory structure. The file-system is arranged

in a hierarchical structure, like an inverted tree. The top of the hierarchy is traditionally

called root (written as a slash /)

In the diagram above, we see that the home directory of the undergraduate

student "ee51vn" contains two sub-directories (docs and pics) and a file

called report.doc.

The full path to the file report.doc is "/home/its/ug1/ee51vn/report.doc"

Starting an UNIX terminal

To open an UNIX terminal window, click on the "Terminal" icon from

Applications/Accessories menus.

7

An UNIX Terminal window will then appear with a % prompt, waiting for you to start

entering commands.

8

Unix system organization (the kernel and the shell)

Both the Shell and the Kernel are the Parts of this Operating System. These Both Parts
are used for performing any Operation on the System. When a user gives his
Command for Performing Any Operation, then the Request Will goes to the Shell Parts,
The Shell Parts is also called as the Interpreter which translate the Human Program
into the Machine Language and then the Request will be transferred to the Kernel. So
that Shell is just called as the interpreter of the Commands which Converts the
Request of the User into the Machine Language.

Kernel is also called as the heart of the Operating System and the Every Operation is
performed by using the Kernel , When the Kernel Receives the Request from the Shell
then this will Process the Request and Display the Results on the Screen. The various
Types of Operations those are Performed by the Kernel are as followings:-

1) It Controls the State the Process Means it checks whether the Process is running or
Process is Waiting for the Request of the user.

2) Provides the Memory for the Processes those are Running on the System Means
Kernel Runs the Allocation and De-allocation Process , First When we Request for the
service then the Kernel will Provides the Memory to the Process and after that he also
Release the Memory which is Given to a Process.

3) The Kernel also Maintains a Time table for all the Processes those are Running
Means the Kernel also Prepare the Schedule Time means this will Provide the Time to
various Process of the CPU and the Kernel also Puts the Waiting and Suspended Jobs
into the different Memory Area.

4) When a Kernel determines that the Logical Memory doesn‘t fit to Store the
Programs. Then he uses the Concept of the Physical Memory which Will Stores the
Programs into Temporary Manner. Means the Physical Memory of the System can be
used as Temporary Memory.

5) Kernel also maintains all the files those are Stored into the Computer System and
the Kernel Also Stores all the Files into the System as no one can read or Write the
Files without any Permissions. So that the Kernel System also Provides us the Facility
to use the Passwords and also all the Files are Stored into the Particular Manner.

As we have learned there are Many Programs or Functions those are Performed by the

Kernel But the Functions those are Performed by the Kernel will never be Shown to the

user. And the Functions of the Kernel are Transparent to the user.

https://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system
https://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system
https://ecomputernotes.com/fundamental/input-output-and-memory/memory
https://ecomputernotes.com/fundamental/input-output-and-memory/memory
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer

9

Files and directories

At this point in the course, you have created lots of files, primarily Maple worksheets.
Some of them you have created yourself as homework assignments, and others you
have copied and used as parts of lab assignments. You may have created other kinds
of files as well, perhaps with the Emacs text editor.

In this tutorial we will study the Unix file system and discuss how to manipulate files and
navigate directories. This will come in handy as you begin writing, compiling, and
running C programs.

The Unix File System

We are now going to look at basic Unix commands for manipulating files and
directories. In Unix, a file can be one of three types: a text file (such as a letter or a C
program), an executable file (such as a compiled C program), or a directory (a file
``containing'' other files).

When you consider that there are thousands of users of the local workstation network,
you will realize that the computers must keep track of tens or hundreds of thousands of
files. Unix uses directories to organize these files, much like a filing cabinet uses
drawers and folders to keep track of documents.

The Unix file system is organized around a single structure of directories, where each
directory can contain more directories (often called subdirectories) and/or files. The
entire file system, often spanning many machines and disks, can be visualized as a
tree. Picture this tree as growing upside down, with the root at the top and the leaves
toward the bottom. The leaves are all text and executable files, while the root, trunk,
limbs, branches, and twigs are all directories.

The file system is called the directory tree, and the directory at the base of the tree is
called the root directory. Every file and directory in the file system has a unique name,
called its pathname. The pathname of the root directory is /.

As a Unix user, you are given control over one directory. This directory is called your
home directory, and it was created when your account was established. This directory is
your personal domain, over which you have complete control. You are free to create
your own subtree of files and directories within your home directory. To determine the
pathname of your home directory, enter the following command into a Unix shell
window.

cd; pwd

Everyone has a different home directory, but two things are certain. The pathname of
your home directory will start with a slash (everything is rooted in the root directory) and

10

it will end with your user name. For example, suppose that a user jones has a home
directory /home/cs/class/jones. From this, we can tell that the root directory / contains a
subdirectory called home, which contains a subdirectory called cs, which contains a
subdirectory called class, which contains a subdirectory called jones. Every directory
has a pathname that shows the sequence of directories that lead from it back to the
root.

Working Directory

At any given time when interacting with Unix, you are ``working in'' or ``connected to''
some directory. This is called your working directory. When a Unix Shell window running
Unix is first created, you will be connected to your home directory. You will typically
change your working directory (with the cd command, as discussed later) several times
during a single session.

There is a command that prints the current working directory:

pwd

(You should try this out in a Unix Shell window, as you should all of the commands that
we introduce.) Notice that part of the name of the current directory (the part following
the last slash) appears as part of the command line prompt. For example, if your
working directory is /home/cs/class/jones, your prompt might look like

7 cadesm35:jones%

Examining Directories

What files and directories are contained in the working directory? You can find out with
the

ls

command, which lists the contents of the working directory. When you enter this
command, you will see a list of all of the Maple worksheets and other files that you have
copied or created in your home directory. Notice that only the names of the files are
displayed, not their full pathnames. But if you know the name of the working directory,
and you know the name of a file within it, you can easily figure out that file's full
pathname. What would be the full pathname of a file named ``file'' in your home
directory?

Click here for answer

Moving Around the Directory Tree

https://www.cs.utah.edu/~zachary/isp/tutorials/files/answer17.html

11

To this point we have never moved away from your home directory. Let's learn how to
navigate the directory tree. Before we do this, let's add to your home directory so that
we will have some files to experiment with. Type the following command into a Unix
Shell window.

mkdir testdir

(This command will create a directory called testdir in your home directory. Use
the ls command to verify that it really is there.)

The command cd takes a directory as an argument and makes that directory your
working directory. There are two ways to specify the name of a directory or file. One
way is to give the full pathname, and the other way is to give enough of the pathname to
let Unix know how to get to the desired directory from the working directory. We'll look at
these two methods in turn.

Absolute Pathnames

You can give the full pathname of the desired directory or file. For example, if jones
wanted to go to her home directory, she could use the command

cd /home/cs/class/jones

Or, if she wanted to connect to the testdir directory within her home directory, she could
issue the command

cd /home/cs/class/jones/testdir

Use cd now to connect to your testdir directory. Remember--if you've forgotten the
pathname of your home directory, you can find it out with the pwd command.

Look at the prompt to verify that you have succeeded in connecting to
the testdir directory. And use the ls command to see what is in the testdir directory.
What do you find?

Click here for the answer

As you experiment with moving around the directory tree, be sure and get used to
looking at the prompt to verify that things are working as you expect. If you get
completely confused, you can use pwd to find out exactly where you are.

Typing a full pathname can be a real pain, especially when it is a long one. Fortunately,
there are several convenient abbreviations. Unix will treat a tilde followed immediately
by a user name as an abbreviation for the full pathname of that user's home directory.
For example, if you wanted to connect to a user jones' home directory, you could do so
with

https://www.cs.utah.edu/~zachary/isp/tutorials/files/answer34.html

12

cd ~jones

Use this form of abbreviation (with your user name, of course) right now to reconnect to
your home directory.

This abbreviated form can be quite useful. Can you figure out how to use it to reconnect
to your testdir directory?

Click here for the answer

If it is your home directory in which you're interested, and not someone else's, there's a
second abbreviation. A tilde all by itself stands for your home directory. So, you can
connect back to your home directory with

cd ~

and to your testdir subdirectory with

cd ~/testdir

Finally, here's the ultimate shortcut. If issue the

cd

command with no argument, you will connect to your home directory.

Relative Pathnames

Be sure that you are connected to your home directory. You should know how to do that
without any help.

You can also specify a directory or file by describing to Unix how to get to the desired
directory or file from the working directory. For example, suppose that you want to
connect to your testdir directory from your home directory. You can do this by simply
issuing the command

cd testdir

Unix knows that the pathname argument to cd is a relative pathname because it does
not begin with a slash or a tilde, as all absolute pathnames do. When Unix encounters a
relative pathname, it glues the relative pathname onto the end of the full pathname of
the working directory to obtain an absolute pathname.

You should now be connected to your testdir subdirectory. You can connect back to
your home directory by issuing the command

https://www.cs.utah.edu/~zachary/isp/tutorials/files/answer40.html

13

cd ..

When ``..'' appears in a pathname, it refers to the parent of the current directory. So the
net result of issuing the cd command above is to move one step closer to the root of the
tree. You should now be connected to your home directory.

Using Absolute and Relative Pathnames

You might be wondering when you should use absolute pathnames and when you
should use relative pathnames. It is entirely a question of convenience. If you need to
name a directory that is ``close to'' your working directory, then relative pathnames are
quite convenient. This will usually be the case, since you'll do most of your work in or
near your home directory.

On the other hand, if you need to name a directory that is ``far away from'' your working
directory, then you should use an absolute pathname.

Creating Files and Directories

Connect to your home directory.

You can create a new (empty) directory using the mkdir command:

mkdir newdir

You can verify that the directory has actually been created by listing the contents of your
home directory.

When you need to create a file, you will generally do it by using Emacs. Suppose that
you'd like to create a file called newfile.txt in your newdir directory. You should select
the ``Open File...'' option from the ``File'' menu.

Emacs will then prompt you for the name of a file to read. What do you make of the
prompt that Emacs gives you?

Click here for the answer

You need to supply the rest of the pathname, in this case newdir/newfile.txt, and then
type the Enter key. You can then use Emacs to create the text and, finally, save your
edits with the ``Save Buffer'' option from the ``File'' menu.

Deleting Files and Directories

By now you know how to create and examine files and directories. It is almost as
important to know how to get rid of unwanted files and directories.

https://www.cs.utah.edu/~zachary/isp/tutorials/files/answer55.html

14

To delete a file we use the rm command. (It helps to know that ``rm'' stands for
``remove''.) Connect to your newdir directory, which should contain a file newfile.txt.
Verify this by listing the directory.

To delete newfile.txt, issue the command

rm newfile.txt

Depending upon how your defaults are set up, Unix may ask you to confirm that you
really mean to delete the file. Just enter a ``y'' or a ``yes'' to confirm.

Now connect back to your home directory.

The command for deleting an empty directory is rmdir. For example,
your testdir directory should be empty. You can delete it with

rmdir testdir

Copying Files

Often you will want to copy a file from one place to another. For example, an instructor
in a class might place a file into a central location and ask everyone in the class to make
a private copy. Or you might decide to make a backup copy of some file before
modifying it.

To copy a file we use the cp command. For example, perhaps you have a file
called solution1.mws or something similar in your home directory. You can copy it into a
file called sol1-backup.mws by issuing the command

cp solution1.mws sol1-backup.mws

Either argument to cp can be an absolute or relative pathname. For example, to
copy solution1.mws to a file called sol1-backup.mws in the newdir directory, issue the
command

cp solution1.mws newdir/sol1-backup.mws

You should now use ls to verify that both copies were made.

File and Directory Summary

Here is a summary of the commands that we covered in this section.

SUMMARY OF UNIX FILE SYSTEM

15

Directory abbreviations

 . Current directory

 .. Parent of current directory

 ~<user> Home directory of user <user>

 ~ Your home directory

Exploring the file system

 pwd Print name of working directory

 cd <pathname> Connect to directory <pathname> (. by default)

 ls <pathname> List contents of directory <pathname> (. by default)

Manipulating directories and files

 mkdir <pathname> Create a directory <pathname>

 rm <pathname> Delete file <pathname>

 cp <pathname> <pathname> Copy one file into another

 rmdir <pathname> Delete empty directory <pathname>

Library functions and system calls

Computer software are developed to either automate some tasks or solve some
problems. Either way, a software achieves the goal with the help of the logic that the
developer of that software writes. Every logic requires some services like computing the
length of a string, opening a file etc. Standard services are catered by some functions or
calls that are provided for this purpose only.

Like for calculating string length, there exists a standard function like strlen(), for
opening a file, there exists functions like open() and fopen(). We call these functions as
standard functions as any application can use them.
These standard functions can be classified into two major categories :

16

1. Library function calls.
2. System function calls.

In this article, we will try to discuss the concept behind the system and library calls in
form of various points and wherever required, I will provide the difference between the
two.

1. Library functions Vs System calls

The functions which are a part of standard C library are known as Library functions. For
example the standard string manipulation functions like strcmp(), strlen() etc are all
library functions.

The functions which change the execution mode of the program from user mode to
kernel mode are known as system calls. These calls are required in case some services
are required by the program from kernel. For example, if we want to change the date
and time of the system or if we want to create a network socket then these services can
only be provided by kernel and hence these cases require system calls. For example,
socket() is a system call.

2. Why do we need system calls?

System calls acts as entry point to OS kernel. There are certain tasks that can only be
done if a process is running in kernel mode. Examples of these tasks can be interacting
with hardware etc. So if a process wants to do such kind of task then it would require
itself to be running in kernel mode which is made possible by system calls.

3. Types of library functions

Library functions can be of two types :

 Functions which do not call any system call.
 Functions that make a system call.

There are library functions that do not make any system call. For example, the string
manipulation functions like strlen() etc fall under this category. Also, there are library
functions that further make system calls, for example the fopen() function which a
standard library function but internally uses the open() sytem call.

4. Interaction between components

The following diagram to depict how Library functions, system calls, application code
interact with each other.

17

The diagram above makes it clear that the application code can interact with Library
functions or system calls. Also, a library function can also call system function from
within. But only system calls have access to kernel which further can access computer
hardware.

5. fopen() vs open()

Some of us may argue that why do we have two functions for the same operation ie
opening a file?

Well, the answer to this is the fact that fopen() is a library function which provides
buffered I/O services for opening a file while open() is a system call that provides non-
buffered I/O services. Though open() function is also available for applications to use
but application should avoid using it directly.

18

In general, if a library function corresponding to a system call exists, then applications
should use the library function because :

 Library functions are portable which means an application using standard library
functions will run on all systems. While on the other hand an application relying on
the corresponding system call may not run on every system as system call interface
may vary from system to system.

 Sometimes the corresponding library function makes the load to system call lesser
resulting in non-frequent switches from user mode to kernel mode. For example if
there is an application that reads data from file very frequently, then using fread()
instead of read() would provide buffered I/O which means that not every call to
fread() would result in a call to system call read(). The fread() may read larger chunk
of data(than required by the user) in one go and hence subsequent fread() will not
require a call to system function read().

6. Is malloc() a system call?

This is one of the very popular misconception that people have. Lets make it clear that
malloc() is not a system call. The function call malloc() is a library function call that
further uses the brk() or sbrk() system call for memory allocation.

7. System calls : Switching execution modes

Traditionally, the mechanism of raising an interrupt of ‗int $0x80‘ to kernel was used.
After trapping the interrupt, kernel processes it and changes the execution mode from
user to kernel mode. Today, the systenter/sysexit instructions are used for switching the
execution mode.

8. Some other differences

Besides all the above, here are a few more differences between a system and library
call :

 A library function is linked to the user program and executes in user space while a
system call is not linked to a user program and executes in kernel space.

 A library function execution time is counted in user level time while a system call
execution time is counted as a part of system time.

 Library functions can be debugged easily using a debugger while System calls
cannot be debugged as they are executed by the kernel.

19

Editors (vi and ed)

Text editing is an important part of all operating systems, including Linux. In Linux, you
need to create and edit a variety of text files, as the following list describes:

 System configuration files,
including /etc/fstab, /etc/hosts, /etc/inittab, /etc/X11/XF86Config, and many more

 User files, such as .newsrc and .bash_profile

 Mail messages and news articles

 Shell script files

 Perl, Python, and Tcl/Tk scripts

 C or C++ programs

All Unix systems, including Linux, come with the following two text editors:

 ed—A line-oriented text editor

 vi—A full-screen text editor that supports the command set of an earlier editor by
the name of ex

In Red Hat Linux, another text editor, vim, emulates vi and ex, but you can invoke the
editor by using the vi command.

 Insider Insight Although ed and vi may seem more cryptic than other, more graphical
text editors, you should learn the basic editing commands of these
two editors, because at times, these editors may be the only ones
available. If you run into a system problem and Linux refuses to boot
from the hard disk, for example, you may need to boot from a floppy.
In this case, you must edit system files by using the ed editor,
because that editor is small enough to fit on the floppy.

As I show in the following sections, learning the basic text-editing commands of ed and
vi is easy.

Using ed

The ed text editor works by using a buffer—an in-memory storage area where the actual
text resides until you explicitly store the text in a file. You must use ed only if you boot a
minimal version of Linux (for example, from a boot floppy), and the system doesn‘t
support full-screen mode.

Starting ed

To start ed, use the following command syntax:

ed [-] [-G] [-s] [-pprompt-string] [filename]

The arguments in brackets are optional. The following list explains these arguments:

20

 - suppresses the printing of character counts and diagnostic messages.

 -G forces backward compatibility with older versions of ed.

 -s is the same as the single hyphen.

 -p prompt-string sets the text that the editor displays when waiting for a
command. (The default is a null prompt string.)

 filename is the name of the file to be edited.

Learning ed

If you use the ed editor, you work in either command mode or text-input mode, as the
following list explains:

 Command mode is what you get by default. In this mode, ed interprets anything
that you type as a command. As you see in the section ―Summarizing ed
Commands,‖ later in this chapter, ed uses a simple command set, wherein each
command consists of a single character.

 Text-input mode enables you to enter text into the buffer. You can enter input
mode by using the commands a (append), c (change), or i (insert). After entering
lines of text, you can leave text-input mode by entering a period (.) on a line by
itself.

Secret

The ed editor embodies the concept of the current line—the line to which ed applies the
commands that you type. Each line has an address: the line number. You can apply a
command to a range of lines by prefixing the command with an address range.
The p command, for example, prints (displays) the current line. To see the first 10 lines,
use the following command:

1,10p

In a command, the period (.) refers to the current line, and the dollar sign ($) refers to
the last line in the file. Thus, the following command deletes all the lines from the
current line to the last one:

.,$d

Examining a Sample Session with ed

The following example shows how to begin editing a file in ed:

ed -p: /etc/fstab

621

:

21

This example uses the -p option to set the prompt to the colon character (:) and opens
the file /etc/fstab for editing. Turning on a prompt character is helpful, because without
the prompt, determining whether ed is in input mode or command mode is difficult.

The ed editor opens the file, reports the number of characters in the file (621), displays
the prompt (:), and waits for a command.

After ed opens a file for editing, the current line is the last line of the file. To see the
current line number, use the .= command, as follows:

:.=

8

The output tells you that the /etc/fstab file contains eight lines. (Your
system‘s /etc/fstab file, of course, may contain a different number of lines.) The
following example shows how you can see all these lines:

:1,$p

LABEL=/ / ext3 defaults 1 1

LABEL=/boot /boot ext3 defaults 1 2

none /dev/pts devpts gid=5,mode=620 0 0

none /proc proc defaults 0 0

none /dev/shm tmpfs defaults 0 0

/dev/hda6 swap swap defaults 0 0

/dev/cdrom /mnt/cdrom udf,iso9660 noauto,owner,kudzu,ro 0 0

/dev/fd0 /mnt/floppy auto noauto,owner,kudzu 0 0

:

To go to a specific line, type the line number and the editor then displays that line. Here
is an example that takes you to the first line in the file:

:1

LABEL=/ / ext3 defaults 1 1

Suppose that you want to delete the line that contains cdrom. To search for a string,
type a slash (/) and follow it with the string that you want to locate, as follows:

:/cdrom

/dev/cdrom /mnt/cdrom udf,iso9660 noauto,owner,kudzu,ro 0 0

22

That line becomes the current line. To delete the line, use the d command, as follows:

:d

:

To replace a string with another, use the s command. To replace cdrom with the
string cd, for example, use the following command:

:s/cdrom/cd/

:

To insert a line in front of the current line, use the i command, as follows:

:i

 (type the line you want to insert)

. (type a single period)

:

You can enter as many lines as you want. After the last line, enter a period (.) on a line
by itself. That period marks the end of text-input mode, and the editor switches to
command mode. In this case, you can tell that ed has switched to command mode,
because you see the prompt (:).

If you‘re happy with the changes, you can write them to the file by using
the w command. If you want to save the changes and exit, type wq to perform both
steps at the same time, as follows:

:wq

645

The ed editor saves the changes in the file, displays the number of characters that it
saved, and exits.

If you want to quit the editor without saving any changes, use the Q command.

Summarizing ed Commands

The preceding sample session should give you an idea of how to use ed commands to
perform the basic tasks of editing a text file. Table 11-1 lists all commonly used ed
commands.

Table 11-1: Commonly Used ed Commands

23

Command Meaning

!command Execute a shell command

$ Go to the last line in the buffer

% Apply the command that follows to all lines in the buffer (for example,
%p prints all lines)

+ Go to the next line

+n Go to nth next line (n is a number)

, Apply the command that follows to all lines in the buffer (for example, ,p
prints all lines); similar to %

- Go to the preceding line

-n Go to nth previous line (n is a number)

. Refer to the current line in the buffer

/regex/ Search forward for the specified regular expression (see Chapter 24 for
an introduction to regular expressions)

; Refer to a range of line (if you specify no line numbers, the editor
assumes current through last line in the buffer)

= Print the line number

?regex? Search backward for the specified regular expression (see Chapter 24
for an introduction to regular expressions)

^ Go to the preceding line; also see the - command

^n Go to the nth previous line (where n is a number); see also the -
n command

24

Table 11-1: Commonly Used ed Commands

Command Meaning

a Append after the current line

c Change the specified lines

d Delete the specified lines

e file Edit the file

f file Change the default filename

h Display an explanation of the last error

H Turn on verbose-mode error reporting

i Insert text before the current line

j Join contiguous lines

kx Mark the line with letter x (later, you can refer to the line as ‗x)

l Print (display) lines

m Move lines

n Go to line number n

newline Display the next line and make that line current

P Toggle prompt mode on or off

q Quit the editor

25

Table 11-1: Commonly Used ed Commands

Command Meaning

Q Quit the editor without saving changes

r file Read and insert the contents of the file after the current line

s/old/new/ Replace old string with new

Space n A space, followed by n; nth next line (n is a number)

u Undo the last command

W file Append the contents of the buffer to the end of the specified file

w file Save the buffer in the specified file (if you name no file, ed saves it in the
default file—the file whose contents ed is currently editing)

You can prefix most editing commands with a line number or an address range, which
you express in terms of two line numbers that you separate with a comma; the
command then applies to the specified lines. To append text after the second line in the
buffer, for example, use the following command:

2a

(Type lines of text. End with single period on a line.)

To print lines 3 through 15, use the following command:

3,15p

Although you may not use ed often, much of the command syntax carries over to the vi
editor. As the following section on vi shows, vi accepts ed commands if it‘s in its
command mode.

Using vi

26

The vi editor is a full-screen text editor that enables you to view a file several lines at a
time. Most UNIX systems, including Linux, come with vi. If you learn the basic features
of vi, therefore, you can edit text files on almost any UNIX system.

As does the ed editor, vi works with a buffer. As vi edits a file, it reads the file into a
buffer—a block of memory—and enables you to change the text in the buffer. The vi
editor also uses temporary files during editing, but it doesn‘t alter the original file until
you save the changes by using the :w command.

Setting the Terminal Type

Before you start a full-screen text editor such as vi, you must set the TERM environment
variable to the terminal type (such as vt100 or xterm). The vi editor uses the terminal
type to look up the terminal‘s characteristics in the /etc/termcap file and then control the
terminal in full-screen mode.

If you run the X Window System and a GUI, such as GNOME or KDE, you can use vi in
a terminal window. The terminal window‘s terminal type is xterm. (To verify, type echo
$TERM at the command prompt.) After you start the terminal window, it automatically
sets the TERM environment variable to xterm. You can normally, therefore, use vi in a
terminal window without explicitly setting the TERM variable.

Starting vi

If you want to consult the online manual pages for vi, type the following command:

man vi

To start the editor, use the vi name and run it with the following command syntax:

vi [flags] [+cmd] [filename]

The arguments shown in brackets are optional. The following list explains these
arguments:

 flags are single-character flags that control the way that vi runs.

 +cmd causes vi to run the specified command after it starts. (You learn more
about these commands in the section ―Summarizing the vi Commands,‖ later in
this chapter.)

 filename is the name of the file to be edited.

The flags arguments can include one or more of the following:

 -c cmd executes the specified command before editing begins.

 -e starts in colon command mode (which I describe in the following section).

 -i starts in input mode (which I also describe in the following section).

27

 -m causes the editor to search through the file for something that looks like an
error message from a compiler.

 -R makes the file read-only so that you can‘t accidentally overwrite the file. (You
can also type view filename to start the editor in this mode to simply view a file.)

 -s runs in safe mode, which turns off many potentially harmful commands.

 -v starts in visual command mode (which I describe in the following section).

Most of the time, however, vi starts with a filename as the only argument, as follows:

vi /etc/hosts

Another common way to start vi is to jump to a specific line number right at startup. To
begin editing at line 107 of the file /etc/X11/XF86Config, for example, use the following
command:

vi +107 /etc/X11/XF86Config

This way of starting vi is useful if you edit a source file after the compiler reports an error
at a specific line number.

Learning vi Concepts

If you edit a file by using vi, the editor loads the file into a buffer, displays the first few
lines of the file in a full-screen window, and positions the cursor on the first line. If you
type the command vi /etc/fstab in a terminal window, for example, you get a full-screen
text window, as shown in Figure 11-1.

Figure 11-1: A File Displayed in a Full-Screen Text Window by the vi Editor.

28

The last line shows information about the file, including the number of lines and the
number of characters in the file. Later, vi uses this area as a command-entry area. It
uses the rest of the lines to display the file. If the file contains fewer lines than the
window, vi displays the empty lines with a tilde (~) in the first column.

The cursor marks the current line, appearing there as a small black rectangle. The
cursor appears on top of a character. In Figure 11-1, the cursor is on the first character
of the first line.

In vi, you work in one of the following three modes:

 Visual-command mode is what you get by default. In this mode, vi interprets
anything that you type as a command that applies to the line containing the
cursor. The vi commands are similar to those of ed, and I list the in the section
―Summarizing the vi Commands,‖ later in this chapter.

 Colon-command mode enables you to read or write files, set vi options, and quit.
All colon commands start with a colon (:). After you enter the colon, vi positions
the cursor at the last line and enables you to type a command. The command
takes effect after you press Enter. Notice that vi‘s colon-command mode relies on
the ed editor. When editing a file using vi, you can press Escape at any time to
enter the command mode. In fact, if you are not sure what mode vi is in, press
Escape a few times to get vi into command mode.

 Text-input mode enables you to enter text into the buffer. You can enter text-
input mode by using the command a (insert after cursor), A (append at end of
line), or i (insert after cursor). After entering lines of text, you must press Esc to
leave text-input mode and reenter visual-command mode.

One problem with all these modes is that you can‘t easily determine vi‘s current mode.
Typing text, only to realize that vi isn‘t in text-input mode, can be frustrating. The
converse situation also is common—you may end up typing text when you want to enter
a command. To ensure that vi is in command mode, just press Esc a few times.
(Pressing Esc more than once doesn‘t hurt.)

 Tip To view online Help in vi, type :help while in command mode.

Examining a Sample Session with vi

To begin editing the file /etc/fstab, enter the following command (before you edit the file,
please make a backup copy by typing the command cp /etc/fstab /etc/fstab-saved):

vi /etc/fstab

Figure 11-1, earlier in this chapter, shows you the resulting display, with the first few
lines of the file appearing in a full-screen text window. The last line shows the file‘s
name and statistics: the number of lines and characters.

29

The vi editor initially positions the cursor on the first character. One of the first things
that you need to learn is how to move the cursor around. Try the following commands
(each command being a single letter; just type the letter, and vi responds):

 j moves the cursor one line down.

 k moves the cursor one line up.

 h moves the cursor one character to the left.

 l moves the cursor one character to the right.

You can also move the cursor by using the arrow keys.

Instead of moving one line or one character at a time, you can move one word at a time.
Try the following single-character commands for word-size cursor movement:

 w moves the cursor one word forward.

 b moves the cursor one word backward.

The last type of cursor movement affects several lines at a time. Try the following
commands and see what happens:

 Ctrl-D scrolls down half a screen.

 Ctrl-U scrolls up half a screen.

The last two commands, of course, aren‘t necessary if the file contains only a few lines.
If you‘re editing large files, however, the capability to move several lines at a time is
handy.

You can move to a specific line number at any time by using a colon command. To go
to line 1, for example, type the following and then press Enter:

:1

After you type the colon, vi displays the colon on the last line of the screen. From then
on, vi uses the text that you type as a command. You must press Enter to submit the
command to vi. In colon-command mode, vi accepts all the commands that the ed editor
accepts—and then some.

To search for a string, first type a slash (/). The vi editor displays the slash on the last
line of the screen. Type the search string, and then press Enter. The vi editor locates
the string and positions the cursor at the beginning of that string. Thus, to locate the
string cdrom in the file /etc/fstab, type the following:

/cdrom

To delete the line that contains the cursor, type dd. The vi editor deletes that line of text
and makes the next line the current one.

30

 Tip To begin entering text in front of the cursor, type i. The vi editor switches to text-
input mode. Now you can enter text. After you finish entering text, press Esc to
return to visual-command mode.

After you finish editing the file, you can save the changes in the file by using
the :w command. If you want to save the changes and exit, you can type :wq to perform
both steps at the same time. The vi editor saves the changes in the file and exits. You
can also save the changes and exit the editor by pressing Shift-zz (press and hold the
Shift key and press z twice).

To quit the editor without saving any changes, type the :q! command.

Summarizing the vi Commands

The sample editing session should give you a feel for the vi commands, especially its
three modes:

 Visual-command mode (the default)

 Colon-command mode, in which you enter commands, following them with a
colon (:)

 Text-input mode, which you enter by typing a, A, or i

In addition to the few commands that the sample session illustrates, vi accepts many
other commands. Table 11-2 lists the basic vi commands, organized by task.

Table 11-2: Basic vi Commands

Command Meaning

Insert Text

a Insert text after the cursor

A Insert text at the end of the current line

I Insert text at the beginning of the current line

i Insert text before the cursor

o Open a line below the current line

O Open a line above the current line

31

Table 11-2: Basic vi Commands

Command Meaning

Ctrl-v Insert any special character in input mode

Delete Text

D Delete up to the end of the current line

dd Delete the current line

dw Delete from the cursor to the end of the following word

x Delete the character on which the cursor rests

Change Text

C Change up to the end of the current line

cc Change the current line

cw Change the word

J Join the current line with the next one

rx Replace the character under the cursor with x (x is any
character)

~ Change the character under the cursor to the opposite case

Move Cursor

$ Move to the end of the current line

32

Table 11-2: Basic vi Commands

Command Meaning

; Repeat the last f or F command

^ Move to the beginning of the current line

e Move to the end of the current word

fx Move the cursor to the first occurrence of character x on the
current line

Fx Move the cursor to the last occurrence of character x on the
current line

H Move the cursor to the top of the screen

h Move one character to the left

j Move one line down

k Move one line up

L Move the cursor to the end of the screen

l Move one character to the right

M Move the cursor to the middle of the screen

n| Move the cursor to column n on current line

nG Place cursor on line n

w Move to the beginning of the following word

33

Table 11-2: Basic vi Commands

Command Meaning

Mark a Location

'x Move the cursor to the beginning of the line that contains
mark x

`x Move the cursor to mark x

mx Mark the current location with the letter x

Scroll Text

Ctrl-b Scroll backward by a full screen

Ctrl-d Scroll forward by half a screen

Ctrl-f Scroll forward by a full screen

Ctrl-u Scroll backward by half a screen

Refresh Screen

Ctrl-L Redraw the screen

Cut and Paste Text

"xndd Delete n lines and move them to buffer x (x is any single
lowercase character)

"Xnyy Yank n (a number) lines and append them to buffer x

"xnyy Yank n (a number) lines into buffer x (x is any single
uppercase character)

34

Table 11-2: Basic vi Commands

Command Meaning

"xp Put the yanked lines from buffer x after the current line

P Put the yanked line above the current line

p Put the yanked line below the current line

yy Yank (copy) the current line into an unnamed buffer

Colon Commands

:!command Execute the shell command

:e filename Edit the file

:f Display the filename and current line number

:N Move to line n (n is a number)

:q Quit the editor

:q! Quit without saving changes

:r filename Read the file and insert after the current line

:w filename Write the buffer to the file

:wq Save the changes and exit

Search Text

/string Search forward for string

35

Table 11-2: Basic vi Commands

Command Meaning

?string Search backward for string

n Find the next string

View File Information

Ctrl-g Show the filename, size, and current line number

Miscellaneous

u Undo the last command

Esc End text-input mode and enter visual-command mode

U Undo recent changes to the current line

36

Unit-II

Unix Shell programming

Types of Shells

The shell provides you with an interface to the UNIX system. It gathers input from you
and executes programs based on that input. When a program finishes executing, it
displays that program's output.

A shell is an environment in which we can run our commands, programs, and shell
scripts. There are different flavors of shells, just as there are different flavors of
operating systems. Each flavor of shell has its own set of recognized commands and
functions.

Shell Prompt:

The prompt, $, which is called command prompt, is issued by the shell. While the
prompt is displayed, you can type a command.

The shell reads your input after you press Enter. It determines the command you want
executed by looking at the first word of your input. A word is an unbroken set of
characters. Spaces and tabs separate words.

Following is a simple example of date command which displays current date and time:

$date
Thu Jun 25 08:30:19 MST 2009

You can customize your command prompt using environment variable PS1 explained
in Environment tutorial.

Shell Types:

In UNIX there are two major types of shells:

1. The Bourne shell. If you are using a Bourne-type shell, the default prompt is the
$ character.

2. The C shell. If you are using a C-type shell, the default prompt is the %
character.

There are again various subcategories for Bourne Shell which are listed as follows:

 Bourne shell (sh)

 Korn shell (ksh)

 Bourne Again shell (bash)

37

 POSIX shell (sh)

The different C-type shells follow:

 C shell (csh)

 TENEX/TOPS C shell (tcsh)

The original UNIX shell was written in the mid-1970s by Stephen R. Bourne while he
was at AT&T Bell Labs in New Jersey.

The Bourne shell was the first shell to appear on UNIX systems, thus it is referred to as
"the shell".

The Bourne shell is usually installed as /bin/sh on most versions of UNIX. For this
reason, it is the shell of choice for writing scripts to use on several different versions of
UNIX.

In this tutorial, we are going to cover most of the Shell concepts based on Borne Shell.

Shell Scripts:

The basic concept of a shell script is a list of commands, which are listed in the order of
execution. A good shell script will have comments, preceded by a pound sign, #,
describing the steps.

There are conditional tests, such as value A is greater than value B, loops allowing us
to go through massive amounts of data, files to read and store data, and variables to
read and store data, and the script may include functions.

Shell scripts and functions are both interpreted. This means they are not compiled.

We are going to write a many scripts in the next several tutorials. This would be a
simple text file in which we would put our all the commands and several other required
constructs that tell the shell environment what to do and when to do it.

Example Script:

Assume we create a test.sh script. Note all the scripts would have .sh extension.
Before you add anything else to your script, you need to alert the system that a shell
script is being started. This is done using the shebang construct. For example:

#!/bin/sh

This tells the system that the commands that follow are to be executed by the Bourne
shell. It's called a shebang because the # symbol is called a hash, and the ! symbol is
called a bang.

To create a script containing these commands, you put the shebang line first and then
add the commands:

#!/bin/bash
pwd

38

ls

Shell Comments:

You can put your comments in your script as follows:

#!/bin/bash

Author : Zara Ali
Copyright (c) Tutorialspoint.com
Script follows here:
pwd
ls

Now you save the above content and make this script executable as follows:

$chmod +x test.sh

Now you have your shell script ready to be executed as follows:

$./test.sh

This would produce following result:

/home/amrood
index.htm unix-basic_utilities.htm unix-directories.htm
test.sh unix-communication.htm unix-environment.htm

Note: To execute your any program available in current directory you would execute
using ./program_name

Extended Shell Scripts:

Shell scripts have several required constructs that tell the shell environment what to do
and when to do it. Of course, most scripts are more complex than above one.

The shell is, after all, a real programming language, complete with variables, control
structures, and so forth. No matter how complicated a script gets, however, it is still just
a list of commands executed sequentially.

Following script use the read command which takes the input from the keyboard and
assigns it as the value of the variable PERSON and finally prints it on STDOUT.

#!/bin/sh

Author : Zara Ali
Copyright (c) Tutorialspoint.com
Script follows here:

echo "What is your name?"

39

read PERSON
echo "Hello, $PERSON"

Here is sample run of the script:

$./test.sh
What is your name?
Zara Ali
Hello, Zara Ali
$

Shell Metacharacters

Linux for Programmers and Users, Section 5.5.

As was discussed in Structure of a Command, the command options, option arguments

and command arguments are separated by the space character. However, we can also

use special characters called metacharacters in a Unix command that the shell

interprets rather than passing to the command.

The Shell Metacharacters are listed here for reference. Many of the metacharacters are

described elsewhere in the study guide.

Symbol Meaning

> Output redirection, (see File Redirection)

>> Output redirection (append)

< Input redirection

* File substitution wildcard; zero or more characters

? File substitution wildcard; one character

[] File substitution wildcard; any character between brackets

`cmd` Command Substitution

$(cmd) Command Substitution

| The Pipe (|)

; Command sequence, Sequences of Commands

|| OR conditional execution

&& AND conditional execution

() Group commands, Sequences of Commands

& Run command in the background, Background Processes

Comment

$ Expand the value of a variable

\ Prevent or escape interpretation of the next character

<< Input redirection (see Here Documents)

http://faculty.salina.k-state.edu/tim/unix_sg/nonprogrammers/commands.html#cmd-struct
http://faculty.salina.k-state.edu/tim/unix_sg/shell/metachar.html#metachar
http://faculty.salina.k-state.edu/tim/unix_sg/shell/redirect.html#redirect
http://faculty.salina.k-state.edu/tim/unix_sg/shell/command_sub.html#command-sub
http://faculty.salina.k-state.edu/tim/unix_sg/shell/command_sub.html#command-sub
http://faculty.salina.k-state.edu/tim/unix_sg/shell/pipe_shell.html#pipe
http://faculty.salina.k-state.edu/tim/unix_sg/shell/sequence.html#sequence
http://faculty.salina.k-state.edu/tim/unix_sg/shell/sequence.html#sequence
http://faculty.salina.k-state.edu/tim/unix_sg/shell/jobs.html#background
http://faculty.salina.k-state.edu/tim/unix_sg/shell/here.html#here

40

4.3.1. How to Avoid Shell Interpretation

Linux for Programmers and Users, Section 5.16.

Sometimes we need to pass metacharacters to the command being run and do not

want the shell to interpret them. There are three options to avoid shell interpretation of

metacharacters.

1. Escape the metacharacter with a backslash (\). (See also Escaped Characters)

Escaping characters can be inconvenient to use when the command line

contains several metacharacters that need to be escaped.

2. Use single quotes (' ') around a string. Single quotes protect all characters except

the backslash (\).

3. Use double quotes (" "). Double quotes protect all characters except the

backslash (\), dollar sign ($) and grave accent (`).

Double quotes is often the easiest to use because we often want environment

variables to be expanded.

Note

Single and double quotes protect each other. For example:

$ echo 'Hi "Intro to Unix" Class'

Hi "Intro to Unix" Class

$ echo "Hi 'Intro to Unix' Class"

Hi 'Intro to Unix' Class

Shell variables

In this chapter, we will learn how to use Shell variables in Unix. A variable is a
character string to which we assign a value. The value assigned could be a number,
text, filename, device, or any other type of data.

A variable is nothing more than a pointer to the actual data. The shell enables you to
create, assign, and delete variables.

Variable Names

http://faculty.salina.k-state.edu/tim/unix_sg/shell/echo.html#escaped

41

The name of a variable can contain only letters (a to z or A to Z), numbers (0 to 9) or
the underscore character (_).

By convention, Unix shell variables will have their names in UPPERCASE.

The following examples are valid variable names −

_ALI
TOKEN_A
VAR_1
VAR_2

Following are the examples of invalid variable names −

2_VAR
-VARIABLE
VAR1-VAR2
VAR_A!

The reason you cannot use other characters such as !, *, or - is that these characters
have a special meaning for the shell.

Defining Variables

Variables are defined as follows −

variable_name=variable_value

For example −

NAME="Zara Ali"

The above example defines the variable NAME and assigns the value "Zara Ali" to it.
Variables of this type are called scalar variables. A scalar variable can hold only one
value at a time.

Shell enables you to store any value you want in a variable. For example −

VAR1="Zara Ali"
VAR2=100

Accessing Values

To access the value stored in a variable, prefix its name with the dollar sign ($) −

For example, the following script will access the value of defined variable NAME and
print it on STDOUT −

Live Demo

#!/bin/sh

NAME="Zara Ali"

http://tpcg.io/AP7zgT

42

echo $NAME

The above script will produce the following value −

Zara Ali

Read-only Variables

Shell provides a way to mark variables as read-only by using the read-only command.
After a variable is marked read-only, its value cannot be changed.

For example, the following script generates an error while trying to change the value of
NAME −

Live Demo

#!/bin/sh

NAME="Zara Ali"
readonly NAME
NAME="Qadiri"

The above script will generate the following result −

/bin/sh: NAME: This variable is read only.

Unsetting Variables

Unsetting or deleting a variable directs the shell to remove the variable from the list of
variables that it tracks. Once you unset a variable, you cannot access the stored value
in the variable.

Following is the syntax to unset a defined variable using the unset command −

unset variable_name

The above command unsets the value of a defined variable. Here is a simple example
that demonstrates how the command works −

#!/bin/sh

NAME="Zara Ali"
unset NAME
echo $NAME

The above example does not print anything. You cannot use the unset command
to unset variables that are marked readonly.

Variable Types

When a shell is running, three main types of variables are present −

http://tpcg.io/tawT1C

43

 Local Variables − A local variable is a variable that is present within the current
instance of the shell. It is not available to programs that are started by the shell.
They are set at the command prompt.

 Environment Variables − An environment variable is available to any child
process of the shell. Some programs need environment variables in order to
function correctly. Usually, a shell script defines only those environment
variables that are needed by the programs that it runs.

 Shell Variables − A shell variable is a special variable that is set by the shell
and is required by the shell in order to function correctly. Some of these
variables are environment variables whereas others are local variables.

Shell scripts

A shell script is a computer program designed to be run by the Unix/Linux shell which
could be one of the following:

 The Bourne Shell

 The C Shell

 The Korn Shell

 The GNU Bourne-Again Shell

A shell is a command-line interpreter and typical operations performed by shell scripts
include file manipulation, program execution, and printing text.

Extended Shell Scripts

Shell scripts have several required constructs that tell the shell environment what to do
and when to do it. Of course, most scripts are more complex than the above one.

The shell is, after all, a real programming language, complete with variables, control
structures, and so forth. No matter how complicated a script gets, it is still just a list of
commands executed sequentially.

The following script uses the read command which takes the input from the keyboard
and assigns it as the value of the variable PERSON and finally prints it on STDOUT.

#!/bin/sh

Author : Zara Ali
Copyright (c) Tutorialspoint.com
Script follows here:

44

echo "What is your name?"
read PERSON
echo "Hello, $PERSON"

Here is a sample run of the script −

$./test.sh
What is your name?
Zara Ali
Hello, Zara Ali
$

Subsequent part of this tutorial will cover Unix/Linux Shell Scripting in detail.

Shell commands

This quick guide lists commands, including a syntax and a brief description. For more
detail, use −

$man command

Files and Directories

These commands allow you to create directories and handle files.

Given below is the list of commands in Files and Directories.

Sr.No. Command & Description

1
cat

Displays File Contents

2
cd

Changes Directory to dirname

3
chgrp

Changes file group

4
chmod

Changes permissions

45

5
cp

Copies source file into destination

6
file

Determines file type

7
find

Finds files

8
grep

Searches files for regular expressions

9
head

Displays first few lines of a file

10
ln

Creates softlink on oldname

11
ls

Displays information about file type

12
mkdir

Creates a new directory dirname

13
more

Displays data in paginated form

14
mv

Moves (Renames) an oldname to newname

15
pwd

46

Prints current working directory

16
rm

Removes (Deletes) filename

17
rmdir

Deletes an existing directory provided it is empty

18
tail

Prints last few lines in a file

19
touch

Updates access and modification time of a file

Manipulating data

The contents of files can be compared and altered with the following commands.

Given below is the list of commands in Manipulating data.

Sr.No. Command & Description

1
awk

Pattern scanning and processing language

2
cmp

Compares the contents of two files

3
comm

Compares sorted data

4
cut

Cuts out selected fields of each line of a file

47

5
diff

Differential file comparator

6
expand

Expands tabs to spaces

7
join

Joins files on some common field

8
perl

Data manipulation language

9
sed

Stream text editor

10
sort

Sorts file data

11
split

Splits file into smaller files

12
tr

Translates characters

13
uniq

Reports repeated lines in a file

14
wc

Counts words, lines, and characters

15
vi

48

Opens vi text editor

16
vim

Opens vim text editor

17
fmt

Simple text formatter

18
spell

Checks text for spelling error

19
ispell

Checks text for spelling error

20
emacs

GNU project Emacs

21
ex, edit

Line editor

22
emacs

GNU project Emacs

Compressed Files

Files may be compressed to save space. Compressed files can be created and
examined.

Sr.No. Command & Description

1
compress

49

Compresses files

2
gunzip

Helps uncompress gzipped files

3
gzip

GNU alternative compression method

4
uncompress

Helps uncompress files

5
unzip

List, test and extract compressed files in a ZIP archive

6
zcat

Cat a compressed file

7
zcmp

Compares compressed files

8
zdiff

Compares compressed files

9
zmore

File perusal filter for crt viewing of compressed text

Getting Information

Various Unix manuals and documentation are available on-line. The following Shell
commands give information −

50

Sr.No. Command & Description

1
apropos

Locates commands by keyword lookup

2
info

Displays command information pages online

2
man

Displays manual pages online

3
whatis

Searches the whatis database for complete words

4
yelp

GNOME help viewer

Network Communication

These following commands are used to send and receive files from a local Unix hosts
to the remote host around the world.

Sr.No. Command & Description

1
ftp

File transfer program

2
rcp

Remote file copy

3
rlogin

51

Remote login to a Unix host

4
rsh

Remote shell

5
tftp

Trivial file transfer program

6
telnet

Makes terminal connection to another host

7
ssh

Secures shell terminal or command connection

8
scp

Secures shell remote file copy

9
sftp

Secures shell file transfer program

Some of these commands may be restricted at your computer for security reasons.

Messages between Users

The Unix systems support on-screen messages to other users and world-wide
electronic mail –

Sr.No. Command & Description

1
evolution

GUI mail handling tool on Linux

52

2
mail

Simple send or read mail program

3
mesg

Permits or denies messages

4
parcel

Sends files to another user

5
pine

Vdu-based mail utility

6
talk

Talks to another user

7
write

Writes message to another user

Programming Utilities

The following programming tools and languages are available based on what you have
installed on your Unix.

Given below is the list of tools and languages in Programming Utilities.

Sr.No. Command & Description

1
dbx

Sun debugger

2
gdb

GNU debugger

53

3
make

Maintains program groups and compile programs

4
nm

Prints program's name list

5
size

Prints program's sizes

6
strip

Removes symbol table and relocation bits

7
cb

C program beautifier

8
cc

ANSI C compiler for Suns SPARC systems

9
ctrace

C program debugger

10
gcc

GNU ANSI C Compiler

11
indent

Indent and format C program source

12
bc

Interactive arithmetic language processor

13
gcl

54

GNU Common Lisp

14
perl

General purpose language

15
php

Web page embedded language

16
py

Python language interpreter

17
asp

Web page embedded language

18
CC

C++ compiler for Suns SPARC systems

19
g++

GNU C++ Compiler

20
javac

JAVA compiler

21
appletvieweir

JAVA applet viewer

22
netbeans

Java integrated development environment on Linux

23
sqlplus

Runs the Oracle SQL interpreter

55

24
sqlldr

Runs the Oracle SQL data loader

25
mysql

Runs the mysql SQL interpreter

Misc Commands

These commands list or alter information about the system −

Given below is the list of Misc Commands in Unix.

Sr.No. Command & Description

1
chfn

Changes your finger information

2
chgrp

Changes the group ownership of a file

3
chown

Changes owner

4
date

Prints the date

5
determin

Automatically finds terminal type

6
du

Prints amount of disk usage

56

7
echo

Echo arguments to the standard options

8
exit

Quits the system

9
finger

Prints information about logged-in users

10
groupadd

Creates a user group

11
groups

Show group memberships

12
homequota

Shows quota and file usage

13
iostat

Reports I/O statistics

14
kill

Sends a signal to a process

15
last

Shows last logins of users

16
logout

Logs off Unix

17
lun

57

Lists user names or login ID

18
netstat

Shows network status

19
passwd

Changes user password

20
passwd

Changes your login password

21
printenv

Displays value of a shell variable

22
ps

Displays the status of current processes

23
ps

Prints process status statistics

24
quota -v

Displays disk usage and limits

25
reset

Resets terminal mode

26
script

Keeps script of terminal session

27
script

Saves the output of a command or process

58

28
setenv

Sets environment variables

30
stty

Sets terminal options

31
time

Helps time a command

32
top

Displays all system processes

33
tset

Sets terminal mode

34
tty

Prints current terminal name

35
umask

Show the permissions that are given to view files by default

36
uname

Displays name of the current system

37
uptime

Gets the system up time

38
useradd

Creates a user account

39
users

59

Prints names of logged in users

40
vmstat

Reports virtual memory statistics

41
w

Shows what logged in users are doing

42
who

Lists logged in users

The environment

In this chapter, we will discuss in detail about the Unix environment. An important Unix
concept is the environment, which is defined by environment variables. Some are set
by the system, others by you, yet others by the shell, or any program that loads
another program.

A variable is a character string to which we assign a value. The value assigned could
be a number, text, filename, device, or any other type of data.

For example, first we set a variable TEST and then we access its value using
the echo command −

$TEST="Unix Programming"
$echo $TEST

It produces the following result.

Unix Programming

Note that the environment variables are set without using the $ sign but while
accessing them we use the $ sign as prefix. These variables retain their values until we
come out of the shell.

When you log in to the system, the shell undergoes a phase called initialization to set
up the environment. This is usually a two-step process that involves the shell reading
the following files −

 /etc/profile

 profile

60

The process is as follows −

 The shell checks to see whether the file /etc/profile exists.

 If it exists, the shell reads it. Otherwise, this file is skipped. No error message is
displayed.

 The shell checks to see whether the file .profile exists in your home directory.
Your home directory is the directory that you start out in after you log in.

 If it exists, the shell reads it; otherwise, the shell skips it. No error message is
displayed.

As soon as both of these files have been read, the shell displays a prompt −

$

This is the prompt where you can enter commands in order to have them executed.

Note − The shell initialization process detailed here applies to all Bourne type shells,
but some additional files are used by bash and ksh.

The .profile File

The file /etc/profile is maintained by the system administrator of your Unix machine
and contains shell initialization information required by all users on a system.

The file .profile is under your control. You can add as much shell customization
information as you want to this file. The minimum set of information that you need to
configure includes −

 The type of terminal you are using.

 A list of directories in which to locate the commands.

 A list of variables affecting the look and feel of your terminal.

You can check your .profile available in your home directory. Open it using the vi
editor and check all the variables set for your environment.

Setting the Terminal Type

Usually, the type of terminal you are using is automatically configured by either
the login or getty programs. Sometimes, the auto configuration process guesses your
terminal incorrectly.

If your terminal is set incorrectly, the output of the commands might look strange, or
you might not be able to interact with the shell properly.

To make sure that this is not the case, most users set their terminal to the lowest
common denominator in the following way −

$TERM=vt100
$

61

Setting the PATH

When you type any command on the command prompt, the shell has to locate the
command before it can be executed.

The PATH variable specifies the locations in which the shell should look for
commands. Usually the Path variable is set as follows −

$PATH=/bin:/usr/bin
$

Here, each of the individual entries separated by the colon character (:) are directories.
If you request the shell to execute a command and it cannot find it in any of the
directories given in the PATH variable, a message similar to the following appears −

$hello
hello: not found
$

There are variables like PS1 and PS2 which are discussed in the next section.

PS1 and PS2 Variables

The characters that the shell displays as your command prompt are stored in the
variable PS1. You can change this variable to be anything you want. As soon as you
change it, it'll be used by the shell from that point on.

For example, if you issued the command −

$PS1='=>'
=>
=>
=>

Your prompt will become =>. To set the value of PS1 so that it shows the working
directory, issue the command −

=>PS1="[\u@\h \w]\$"
[root@ip-72-167-112-17 /var/www/tutorialspoint/unix]$
[root@ip-72-167-112-17 /var/www/tutorialspoint/unix]$

The result of this command is that the prompt displays the user's username, the
machine's name (hostname), and the working directory.

There are quite a few escape sequences that can be used as value arguments for
PS1; try to limit yourself to the most critical so that the prompt does not overwhelm you
with information.

Sr.No. Escape Sequence & Description

62

1
\t

Current time, expressed as HH:MM:SS

2
\d

Current date, expressed as Weekday Month Date

3
\n

Newline

4
\s

Current shell environment

5
\W

Working directory

6
\w

Full path of the working directory

7
\u

Current user‘s username

8
\h

Hostname of the current machine

9
\#

Command number of the current command. Increases when a new command is
entered

10
\$

If the effective UID is 0 (that is, if you are logged in as root), end the prompt with
the # character; otherwise, use the $ sign

63

You can make the change yourself every time you log in, or you can have the change
made automatically in PS1 by adding it to your .profile file.

When you issue a command that is incomplete, the shell will display a secondary
prompt and wait for you to complete the command and hit Enter again.

The default secondary prompt is > (the greater than sign), but can be changed by re-
defining the PS2 shell variable −

Following is the example which uses the default secondary prompt −

$ echo "this is a
> test"
this is a
test
$

The example given below re-defines PS2 with a customized prompt −

$ PS2="secondary prompt->"
$ echo "this is a
secondary prompt->test"
this is a
test
$

Environment Variables

Following is the partial list of important environment variables. These variables are set
and accessed as mentioned below −

Sr.No. Variable & Description

1
DISPLAY

Contains the identifier for the display that X11 programs should use by default.

2
HOME

Indicates the home directory of the current user: the default argument for the
cd built-in command.

3
IFS

Indicates the Internal Field Separator that is used by the parser for word
splitting after expansion.

64

4
LANG

LANG expands to the default system locale; LC_ALL can be used to override
this. For example, if its value is pt_BR, then the language is set to (Brazilian)
Portuguese and the locale to Brazil.

5
LD_LIBRARY_PATH

A Unix system with a dynamic linker, contains a colonseparated list of directories
that the dynamic linker should search for shared objects when building a process
image after exec, before searching in any other directories.

6
PATH

Indicates the search path for commands. It is a colon-separated list of directories
in which the shell looks for commands.

7
PWD

Indicates the current working directory as set by the cd command.

8
RANDOM

Generates a random integer between 0 and 32,767 each time it is referenced.

9
SHLVL

Increments by one each time an instance of bash is started. This variable is
useful for determining whether the built-in exit command ends the current
session.

10
TERM

Refers to the display type.

11
TZ

Refers to Time zone. It can take values like GMT, AST, etc.

12
UID

Expands to the numeric user ID of the current user, initialized at the shell startup.

65

Following is the sample example showing few environment variables −

$ echo $HOME
/root
]$ echo $DISPLAY

$ echo $TERM
xterm
$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/home/amrood/bin:/usr/local/bin
$

Integer arithmetic and string Manipulation

The expression $(($OPTIND - 1)) in the last example gives a clue as to how the shell
can do integer arithmetic. As you might guess, the shell interprets words surrounded
by $((and)) as arithmetic expressions. Variables in arithmetic expressions do not need
to be preceded by dollar signs, though it is not wrong to do so.

Arithmetic expressions are evaluated inside double quotes, like tildes, variables, and
command substitutions. We're finally in a position to state the definitive rule about
quoting strings: When in doubt, enclose a string in single quotes, unless it contains
tildes or any expression involving a dollar sign, in which case you should use double
quotes.

For example, the date(1) command on System V-derived versions of UNIX accepts
arguments that tell it how to format its output. The argument +%j tells it to print the day
of the year, i.e., the number of days since December 31st of the previous year.

We can use +%j to print a little holiday anticipation message:

print "Only $(((365-$(date +%j)) / 7)) weeks until the New Year!"

We'll show where this fits in the overall scheme of command-line processing in Chapter
7, Input/Output and Command-line Processing.

The arithmetic expression feature is built in to the Korn shell's syntax, and was available
in the Bourne shell (most versions) only through the external command expr(1). Thus it
is yet another example of a desirable feature provided by an external command (i.e., a
syntactic kludge) being better integrated into the shell. [[/]] and getopts are also
examples of this design trend.

Korn shell arithmetic expressions are equivalent to their counterparts in the C language.
[5] Precedence and associativity are the same as in C. Table 6.2 shows the arithmetic
operators that are supported. Although some of these are (or contain) special

http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch07_01.htm
http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch07_01.htm
http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch06_02.htm#KSH-CH-6-TAB-1

66

characters, there is no need to backslash-escape them, because they are within
the $((...)) syntax.

[5] The assignment forms of these operators are also permitted. For example, $((x +=
2)) adds 2 to x and stores the result back in x.

Table 6.2: Arithmetic Operators

Operator Meaning

+ Plus

- Minus

* Times

/ Division (with truncation)

% Remainder

<< Bit-shift left

>> Bit-shift right

& Bitwise and

| Bitwise or

~ Bitwise not

^ Bitwise exclusive or

Parentheses can be used to group subexpressions. The arithmetic expression syntax
also (like C) supports relational operators as "truth values" of 1 for true and 0 for
false. Table 6.3 shows the relational operators and the logical operators that can be
used to combine relational expressions.

Table 6.3: Relational Operators

Operator Meaning

< Less than

http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch06_02.htm#KSH-CH-6-TAB-2

67

Table 6.3: Relational Operators

Operator Meaning

> Greater than

<= Less than or equal

>= Greater than or equal

== Equal

!= Not equal

&& Logical and

|| Logical or

For example, $((3 > 2)) has the value 1; $(((3 > 2) || (4 <= 1))) also has the value 1,
since at least one of the two subexpressions is true.

The shell also supports base N numbers, where N can be up to 36. The
notation B#N means "N base B". Of course, if you omit the B#, the base defaults to 10.

6.2.1 Arithmetic Conditionals

Another construct, closely related to $((...)), is ((...)) (without the leading dollar sign). We
use this for evaluating arithmetic condition tests, just as [[...]] is used for string, file
attribute, and other types of tests.

((...)) evaluates relational operators differently from $((...)) so that you can use it
in if and while constructs. Instead of producing a textual result, it just sets its exit status
according to the truth of the expression: 0 if true, 1 otherwise. So, for example, ((3 >
2)) produces exit status 0, as does (((3 > 2) || (4 <= 1))), but (((3 > 2) && (4 <= 1)
)) has exit status 1 since the second subexpression isn't true.

You can also use numerical values for truth values within this construct. It's like the
analogous concept in C, which means that it's somewhat counterintuitive to non-C
programmers: a value of 0 means false (i.e., returns exit status 1), and a non-0 value
means true (returns exit status 0), e.g., ((14)) is true. See the code for
the kshdb debugger in Chapter 9 for two more examples of this.

6.2.2 Arithmetic Variables and Assignment

http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch09_01.htm

68

The ((...)) construct can also be used to define integer variables and assign values to
them. The statement:

((intvar=expression))

creates the integer variable intvar (if it doesn't already exist) and assigns to it the result
of expression.

That syntax isn't intuitive, so the shell provides a better equivalent: the built-in
command let. The syntax is:

let intvar=expression

It is not necessary (because it's actually redundant) to surround the expression
with $((and)) in a let statement. As with any variable assignment, there must not be
any space on either side of the equal sign (=). It is good practice to surround
expressions with quotes, since many characters are treated as special by the shell
(e.g., *, #, and parentheses); furthermore, you must quote expressions that include
whitespace (spaces or TABs). See Table 6.4 for examples.

Table 6.4: Sample Integer Expression Assignments

Assignment Value

let x= $x

1+4 5

'1 + 4' 5

'(2+3) * 5' 25

'2 + 3 * 5' 17

'17 / 3' 5

'17 % 3' 2

'1<<4' 16

'48>>3' 6

'17 & 3' 1

http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch06_02.htm#KSH-CH-6-TAB-3

69

Table 6.4: Sample Integer Expression Assignments

Assignment Value

let x= $x

'17 | 3' 19

'17 ^ 3' 18

Here is a small task that makes use of integer arithmetic.

Task 6.1

Write a script called pages that, given the name of a text file, tells how many pages of
output it contains. Assume that there are 66 lines to a page but provide an option
allowing the user to override that.

We'll make our option -N, a la head. The syntax for this single option is so simple that
we need not bother with getopts. Here is the code:

if [[$1 = -+([0-9])]]; then
 let page_lines=${1#-}
 shift
else
 let page_lines=66
fi
let file_lines="$(wc -l < $1)"

let pages=file_lines/page_lines
if ((file_lines % page_lines > 0)); then
 let pages=pages+1
fi

print "$1 has $pages pages of text."

Notice that we use the integer conditional ((file_lines % page_lines > 0)) rather than
the [[...]] form.

At the heart of this code is the UNIX utility wc(1), which counts the number of lines,
words, and characters (bytes) in its input. By default, its output looks something like this:

8 34 161 bob

70

wc's output means that the file bob has 8 lines, 34 words, and 161
characters. wc recognizes the options -l, -w, and -c, which tell it to print only the number
of lines, words, or characters, respectively.

wc normally prints the name of its input file (given as argument). Since we want only the
number of lines, we have to do two things. First, we give it input from file redirection
instead, as in wc -l < bob instead of wc -l bob. This produces the number of lines
preceded by a single space (which would normally separate the filename from the
number).

Unfortunately, that space complicates matters: the statement let file_lines=$(wc -l <
$1) becomes "let file_lines= N" after command substitution; the space after the equal
sign is an error. That leads to the second modification, the quotes around the command
substitution expression. The statement let file_lines=" N" is perfectly legal,
and let knows how to remove the leading space.

The first if clause in the pages script checks for an option and, if it was given, strips the
dash (-) off and assigns it to the variable page_lines. wc in the command substitution
expression returns the number of lines in the file whose name is given as argument.

The next group of lines calculates the number of pages and, if there is a remainder after
the division, adds 1. Finally, the appropriate message is printed.

As a bigger example of integer arithmetic, we will complete our emulation of the C
shell's pushd and popd functions (Task 4-8). Remember that these functions operate
on DIRSTACK, a stack of directories represented as a string with the directory names
separated by spaces. The C shell's pushd and popd take additional types of arguments,
which are:

 pushd +n takes the nth directory in the stack (starting with 0), rotates it to the
top, and cds to it.

 pushd without arguments, instead of complaining, swaps the two top directories
on the stack and cds to the new top.

 popd +n takes the nth directory in the stack and just deletes it.

The most useful of these features is the ability to get at the nth directory in the stack.
Here are the latest versions of both functions:

function pushd { # push current directory onto stack
 dirname=$1
 if [[-d $dirname && -x $dirname]]; then
 cd $dirname
 DIRSTACK="$dirname ${DIRSTACK:-$PWD}"
 print "$DIRSTACK"
 else
 print "still in $PWD."

71

 fi
}

function popd { # pop directory off the stack, cd to new top
 if [[-n $DIRSTACK]]; then
 DIRSTACK=${DIRSTACK#* }
 cd ${DIRSTACK%% *}
 print "$PWD"
 else
 print "stack empty, still in $PWD."
 fi
}

To get at the nth directory, we use a while loop that transfers the top directory to a
temporary copy of the stack n times. We'll put the loop into a function
called getNdirs that looks like this:

function getNdirs{
 stackfront=''
 let count=0
 while ((count < $1)); do
 stackfront="$stackfront ${DIRSTACK%% *}"
 DIRSTACK=${DIRSTACK#* }
 let count=count+1
 done
}

The argument passed to getNdirs is the n in question. The variable stackfront is the
temporary copy that will contain the first n directories when the loop is
done. stackfront starts as null; count, which counts the number of loop iterations,
starts as 0.

The first line of the loop body appends the top of the stack (${DIRSTACK%% *})
to stackfront; the second line deletes the top from the stack. The last line increments
the counter for the next iteration. The entire loop executes N times, for values
of count from 0 to N-1.

When the loop finishes, the last directory in $stackfront is the Nth directory. The
expression ${stackfront##* } extracts this directory. Furthermore, DIRSTACK now
contains the "back" of the stack, i.e., the stack without the first n directories. With this in
mind, we can now write the code for the improved versions of pushd and popd:

function pushd {
 if [[$1 = ++([0-9])]]; then
 # case of pushd +n: rotate n-th directory to top
 let num=${1#+}

72

 getNdirs $num

 newtop=${stackfront##* }
 stackfront=${stackfront%$newtop}

 DIRSTACK="$newtop $stackfront $DIRSTACK"
 cd $newtop

 elif [[-z $1]]; then
 # case of pushd without args; swap top two directories
 firstdir=${DIRSTACK%% *}
 DIRSTACK=${DIRSTACK#* }
 seconddir=${DIRSTACK%% *}
 DIRSTACK=${DIRSTACK#* }
 DIRSTACK="$seconddir $firstdir $DIRSTACK"
 cd $seconddir

 else
 cd $dirname
 # normal case of pushd dirname
 dirname=$1
 if [[-d $dirname && -x $dirname]]; then
 DIRSTACK="$dirname ${DIRSTACK:-$PWD}"
 print "$DIRSTACK"
 else
 print still in "$PWD."
 fi
 fi
}

function popd { # pop directory off the stack, cd to new top
 if [[$1 = ++([0-9])]]; then
 # case of popd +n: delete n-th directory from stack
 let num={$1#+}
 getNdirs $num
 stackfront=${stackfront% *}
 DIRSTACK="$stackfront $DIRSTACK"

 else
 # normal case of popd without argument
 if [[-n $DIRSTACK]]; then
 DIRSTACK=${DIRSTACK#* }
 cd ${DIRSTACK%% *}
 print "$PWD"
 else
 print "stack empty, still in $PWD."

73

 fi
 fi
}

These functions have grown rather large; let's look at them in turn. The if at the
beginning of pushd checks if the first argument is an option of the form +N. If so, the first
body of code is run. The first let simply strips the plus sign (+) from the argument and
assigns the result - as an integer - to the variable num. This, in turn, is passed to
the getNdirs function.

The next two assignment statements set newtop to the Nth directory - i.e., the last
directory in $stackfront - and delete that directory from stackfront. The final two lines
in this part of pushd put the stack back together again in the appropriate order and cd to
the new top directory.

The elif clause tests for no argument, in which case pushd should swap the top two
directories on the stack. The first four lines of this clause assign the top two directories
to firstdir and seconddir, and delete these from the stack. Then, as above, the code
puts the stack back together in the new order and cds to the new top directory.

The else clause corresponds to the usual case, where the user supplies a directory
name as argument.

popd works similarly. The if clause checks for the +N option, which in this case means
delete the Nth directory. A let extracts the N as an integer; the getNdirs function puts
the first n directories into stackfront. Then the
line stackfront=${stackfront% *} deletes the last directory (the Nth directory)
from stackfront. Finally, the stack is put back together with the Nth directory missing.

The else clause covers the usual case, where the user doesn't supply an argument.

Before we leave this subject, here are a few exercises that should test your
understanding of this code:

1. Add code to pushd that exits with an error message if the user supplies no
argument and the stack contains fewer than two directories.

2. Verify that when the user specifies +N and N exceeds the number of directories
in the stack, both pushd and popd use the last directory as the Nth directory.

3. Modify the getNdirs function so that it checks for the above condition and exits
with an appropriate error message if true.

4. Change getNdirs so that it uses cut (with command substitution), instead of
the while loop, to extract the first N directories. This uses less code but runs
more slowly because of the extra processes generated.

74

Special command line characters

What makes a character special? If it has a meaning beyond its literal meaning, a meta-
meaning, then we refer to it as a special character. Along with commands
and keywords, special characters are building blocks of Bash scripts.

Special Characters Found In Scripts and Elsewhere

Comments. Lines beginning with a # (with the exception of #!) are comments
and will not be executed.

This line is a comment.

Comments may also occur following the end of a command.

echo "A comment will follow." # Comment here.
^ Note whitespace before #

Comments may also follow whitespace at the beginning of a line.

 # A tab precedes this comment.

Comments may even be embedded within a pipe.

initial=(`cat "$startfile" | sed -e '/#/d' | tr -d '\n' |\
Delete lines containing '#' comment character.
 sed -e 's/\./\. /g' -e 's/_/_ /g'`)
Excerpted from life.sh script

A command may not follow a comment on the same line. There is no
method of terminating the comment, in order for "live code" to begin on
the same line. Use a new line for the next command.

Of course, a quoted or an escaped # in an echo statement does not begin
a comment. Likewise, a # appears in certain parameter-substitution
constructs and in numerical constant expressions.

echo "The # here does not begin a comment."
echo 'The # here does not begin a comment.'
echo The \# here does not begin a comment.
echo The # here begins a comment.

https://tldp.org/LDP/abs/html/x17129.html#METAMEANINGREF
https://tldp.org/LDP/abs/html/x17129.html#METAMEANINGREF
https://tldp.org/LDP/abs/html/internal.html#KEYWORDREF
https://tldp.org/LDP/abs/html/sha-bang.html#MAGNUMREF
https://tldp.org/LDP/abs/html/special-chars.html#WHITESPACEREF
https://tldp.org/LDP/abs/html/special-chars.html#PIPEREF
https://tldp.org/LDP/abs/html/quoting.html#QUOTINGREF
https://tldp.org/LDP/abs/html/escapingsection.html#ESCP
https://tldp.org/LDP/abs/html/internal.html#ECHOREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#PSUB2
https://tldp.org/LDP/abs/html/parameter-substitution.html#PSUB2
https://tldp.org/LDP/abs/html/numerical-constants.html#NUMCONSTANTS

75

echo ${PATH#*:} # Parameter substitution, not a comment.
echo $((2#101011)) # Base conversion, not a comment.

Thanks, S.C.

The standard quoting and escape characters (" ' \) escape the #.

Certain pattern matching operations also use the #.

;

Command separator [semicolon]. Permits putting two or more commands on
the same line.

echo hello; echo there

if [-x "$filename"]; then # Note the space after the semicolon.
#+ ^^
 echo "File $filename exists."; cp $filename $filename.bak
else # ^^
 echo "File $filename not found."; touch $filename
fi; echo "File test complete."

Note that the ";" sometimes needs to be escaped.

;;

Terminator in a case option [double semicolon].

case "$variable" in
 abc) echo "\$variable = abc" ;;
 xyz) echo "\$variable = xyz" ;;
esac

;;&, ;&

Terminators in a case option (version 4+ of Bash).

.

"dot" command [period]. Equivalent to source (see Example 15-22). This is a
bash builtin.

.

https://tldp.org/LDP/abs/html/quoting.html#QUOTINGREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#PSOREX1
https://tldp.org/LDP/abs/html/moreadv.html#FINDREF0
https://tldp.org/LDP/abs/html/testbranch.html#CASEESAC1
https://tldp.org/LDP/abs/html/bashver4.html#NCTERM
https://tldp.org/LDP/abs/html/bashver4.html#BASH4REF
https://tldp.org/LDP/abs/html/internal.html#SOURCEREF
https://tldp.org/LDP/abs/html/internal.html#EX38
https://tldp.org/LDP/abs/html/internal.html#BUILTINREF

76

"dot", as a component of a filename. When working with filenames, a leading
dot is the prefix of a "hidden" file, a file that an ls will not normally show.

bash$ touch .hidden-file
bash$ ls -l
total 10
 -rw-r--r-- 1 bozo 4034 Jul 18 22:04 data1.addressbook
 -rw-r--r-- 1 bozo 4602 May 25 13:58 data1.addressbook.bak
 -rw-r--r-- 1 bozo 877 Dec 17 2000 employment.addressbook

bash$ ls -al
total 14
 drwxrwxr-x 2 bozo bozo 1024 Aug 29 20:54 ./
 drwx------ 52 bozo bozo 3072 Aug 29 20:51 ../
 -rw-r--r-- 1 bozo bozo 4034 Jul 18 22:04 data1.addressbook
 -rw-r--r-- 1 bozo bozo 4602 May 25 13:58 data1.addressbook.bak
 -rw-r--r-- 1 bozo bozo 877 Dec 17 2000 employment.addressbook
 -rw-rw-r-- 1 bozo bozo 0 Aug 29 20:54 .hidden-file

When considering directory names, a single dot represents the current working
directory, and two dots denote the parent directory.

bash$ pwd
/home/bozo/projects

bash$ cd .
bash$ pwd
/home/bozo/projects

bash$ cd ..
bash$ pwd
/home/bozo/

The dot often appears as the destination (directory) of a file movement
command, in this context meaning current directory.

bash$ cp /home/bozo/current_work/junk/* .

Copy all the "junk" files to $PWD.

.

https://tldp.org/LDP/abs/html/basic.html#LSREF
https://tldp.org/LDP/abs/html/internalvariables.html#PWDREF

77

"dot" character match. When matching characters, as part of a regular
expression, a "dot" matches a single character.

"

partial quoting [double quote]. "STRING" preserves (from interpretation) most
of the special characters within STRING. See Chapter 5.

'

full quoting [single quote]. 'STRING' preserves all special characters
within STRING. This is a stronger form of quoting than "STRING". See Chapter
5.

,

comma operator. The comma operator [1] links together a series of arithmetic
operations. All are evaluated, but only the last one is returned.

let "t2 = ((a = 9, 15 / 3))"
Set "a = 9" and "t2 = 15 / 3"

The comma operator can also concatenate strings.

for file in /{,usr/}bin/*calc
^ Find all executable files ending in "calc"
#+ in /bin and /usr/bin directories.
do
 if [-x "$file"]
 then
 echo $file
 fi
done

/bin/ipcalc
/usr/bin/kcalc
/usr/bin/oidcalc
/usr/bin/oocalc

Thank you, Rory Winston, for pointing this out.

,, ,

Lowercase conversion in parameter substitution (added in version 4 of
Bash).

https://tldp.org/LDP/abs/html/x17129.html#REGEXDOT
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF
https://tldp.org/LDP/abs/html/x17129.html#REGEXDOT
https://tldp.org/LDP/abs/html/varsubn.html#DBLQUO
https://tldp.org/LDP/abs/html/quoting.html
https://tldp.org/LDP/abs/html/varsubn.html#SNGLQUO
https://tldp.org/LDP/abs/html/quoting.html
https://tldp.org/LDP/abs/html/quoting.html
https://tldp.org/LDP/abs/html/ops.html#COMMAOP
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN612
https://tldp.org/LDP/abs/html/bashver4.html#CASEMODPARAMSUB
https://tldp.org/LDP/abs/html/bashver4.html#BASH4REF

78

\

escape [backslash]. A quoting mechanism for single characters.

\X escapes the character X. This has the effect of "quoting" X, equivalent to 'X'.
The \ may be used to quote " and ', so they are expressed literally.

See Chapter 5 for an in-depth explanation of escaped characters.

/

Filename path separator [forward slash]. Separates the components of a
filename (as in /home/bozo/projects/Makefile).

This is also the division arithmetic operator.

`

command substitution. The `command` construct makes available the output
of command for assignment to a variable. This is also known as backquotes or
backticks.

:

null command [colon]. This is the shell equivalent of a "NOP" (no op, a do-
nothing operation). It may be considered a synonym for the shell builtin true.
The ":" command is itself a Bash builtin, and its exit status is true (0).

:
echo $? # 0

Endless loop:

while :
do
 operation-1
 operation-2
 ...
 operation-n
done

Same as:
while true
do
...
done

https://tldp.org/LDP/abs/html/escapingsection.html#ESCP
https://tldp.org/LDP/abs/html/quoting.html
https://tldp.org/LDP/abs/html/ops.html#AROPS1
https://tldp.org/LDP/abs/html/commandsub.html#COMMANDSUBREF
https://tldp.org/LDP/abs/html/commandsub.html#BACKQUOTESREF
https://tldp.org/LDP/abs/html/internal.html#TRUEREF
https://tldp.org/LDP/abs/html/internal.html#BUILTINREF
https://tldp.org/LDP/abs/html/exit-status.html#EXITSTATUSREF

79

Placeholder in if/then test:

if condition
then : # Do nothing and branch ahead
else # Or else ...
 take-some-action
fi

Provide a placeholder where a binary operation is expected, see Example 8-
2 and default parameters.

: ${username=`whoami`}
${username=`whoami`} Gives an error without the leading :
unless "username" is a command or builtin...

: ${1?"Usage: $0 ARGUMENT"} # From "usage-message.sh example script.

Provide a placeholder where a command is expected in a here document.
See Example 19-10.

Evaluate string of variables using parameter substitution (as in Example 10-7).

: ${HOSTNAME?} ${USER?} ${MAIL?}
Prints error message
#+ if one or more of essential environmental variables not set.

Variable expansion / substring replacement.

In combination with the > redirection operator, truncates a file to zero length,
without changing its permissions. If the file did not previously exist, creates it.

: > data.xxx # File "data.xxx" now empty.

Same effect as cat /dev/null >data.xxx
However, this does not fork a new process, since ":" is a builtin.

See also Example 16-15.

In combination with the >> redirection operator, has no effect on a pre-existing
target file (: >> target_file). If the file did not previously exist, creates it.

This applies to regular files, not pipes, symlinks, and certain special files.

https://tldp.org/LDP/abs/html/ops.html#ARITHOPS
https://tldp.org/LDP/abs/html/ops.html#ARITHOPS
https://tldp.org/LDP/abs/html/parameter-substitution.html#DEFPARAM
https://tldp.org/LDP/abs/html/here-docs.html#HEREDOCREF
https://tldp.org/LDP/abs/html/here-docs.html#ANONHEREDOC
https://tldp.org/LDP/abs/html/parameter-substitution.html#PARAMSUBREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#EX6
https://tldp.org/LDP/abs/html/parameter-substitution.html#EXPREPL1
https://tldp.org/LDP/abs/html/io-redirection.html#IOREDIRREF
https://tldp.org/LDP/abs/html/textproc.html#EX12

80

May be used to begin a comment line, although this is not recommended.
Using # for a comment turns off error checking for the remainder of that line, so
almost anything may appear in a comment. However, this is not the case with :.

: This is a comment that generates an error, (if [$x -eq 3]).

The ":" serves as a field separator, in /etc/passwd, and in the $PATH variable.

bash$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/sbin:/usr/sbin:/usr/games

A colon is acceptable as a function name.

:()
{
 echo "The name of this function is "$FUNCNAME" "
 # Why use a colon as a function name?
 # It's a way of obfuscating your code.
}

:

The name of this function is :

This is not portable behavior, and therefore not a recommended practice. In fact,
more recent releases of Bash do not permit this usage. An underscore _ works,
though.

A colon can serve as a placeholder in an otherwise empty function.

not_empty ()
{
 :
} # Contains a : (null command), and so is not empty.

!

reverse (or negate) the sense of a test or exit status [bang]. The ! operator
inverts the exit status of the command to which it is applied (see Example 6-2). It
also inverts the meaning of a test operator. This can, for example, change the
sense of equal (=) to not-equal (!=). The ! operator is a Bash keyword.

In a different context, the ! also appears in indirect variable references.

https://tldp.org/LDP/abs/html/special-chars.html#FIELDREF
https://tldp.org/LDP/abs/html/files.html#DATAFILESREF1
https://tldp.org/LDP/abs/html/internalvariables.html#PATHREF
https://tldp.org/LDP/abs/html/functions.html#FSTRANGEREF
https://tldp.org/LDP/abs/html/portabilityissues.html
https://tldp.org/LDP/abs/html/exit-status.html#EXITSTATUSREF
https://tldp.org/LDP/abs/html/exit-status.html#NEGCOND
https://tldp.org/LDP/abs/html/comparison-ops.html#EQUALSIGNREF
https://tldp.org/LDP/abs/html/internal.html#KEYWORDREF
https://tldp.org/LDP/abs/html/ivr.html#IVRREF

81

In yet another context, from the command line, the ! invokes the Bash history
mechanism (see Appendix L). Note that within a script, the history mechanism is
disabled.

*

wild card [asterisk]. The * character serves as a "wild card" for filename
expansion in globbing. By itself, it matches every filename in a given directory.

bash$ echo *
abs-book.sgml add-drive.sh agram.sh alias.sh

The * also represents any number (or zero) characters in a regular expression.

*

arithmetic operator. In the context of arithmetic operations, the * denotes
multiplication.

** A double asterisk can represent the exponentiation operator or extended file-
match globbing.

?

test operator. Within certain expressions, the ? indicates a test for a condition.

In a double-parentheses construct, the ? can serve as an element of a C-
style trinary operator. [2]

condition?result-if-true:result-if-false

((var0 = var1<98?9:21))
^ ^

if ["$var1" -lt 98]
then
var0=9
else
var0=21
fi

In a parameter substitution expression, the ? tests whether a variable has been
set.

https://tldp.org/LDP/abs/html/histcommands.html
https://tldp.org/LDP/abs/html/globbingref.html
https://tldp.org/LDP/abs/html/x17129.html#ASTERISKREG
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF
https://tldp.org/LDP/abs/html/ops.html#AROPS1
https://tldp.org/LDP/abs/html/ops.html#EXPONENTIATIONREF
https://tldp.org/LDP/abs/html/bashver4.html#GLOBSTARREF
https://tldp.org/LDP/abs/html/bashver4.html#GLOBSTARREF
https://tldp.org/LDP/abs/html/dblparens.html
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN888
https://tldp.org/LDP/abs/html/parameter-substitution.html#PARAMSUBREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#QERRMSG
https://tldp.org/LDP/abs/html/parameter-substitution.html#QERRMSG

82

?

wild card. The ? character serves as a single-character "wild card" for filename
expansion in globbing, as well as representing one character in an extended
regular expression.

$

Variable substitution (contents of a variable).

var1=5
var2=23skidoo

echo $var1 # 5
echo $var2 # 23skidoo

A $ prefixing a variable name indicates the value the variable holds.

$

end-of-line. In a regular expression, a "$" addresses the end of a line of text.

${}

Parameter substitution.

$' ... '

Quoted string expansion. This construct expands single or multiple escaped
octal or hex values into ASCII [3] or Unicode characters.

$*, $@

positional parameters.

$?

exit status variable. The $? variable holds the exit status of a command,
a function, or of the script itself.

$$

process ID variable. The $$ variable holds the process ID [4] of the script in
which it appears.

()

https://tldp.org/LDP/abs/html/globbingref.html
https://tldp.org/LDP/abs/html/x17129.html#QUEXREGEX
https://tldp.org/LDP/abs/html/x17129.html#EXTREGEX
https://tldp.org/LDP/abs/html/x17129.html#EXTREGEX
https://tldp.org/LDP/abs/html/varsubn.html
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF
https://tldp.org/LDP/abs/html/x17129.html#DOLLARSIGNREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#PARAMSUBREF
https://tldp.org/LDP/abs/html/escapingsection.html#STRQ
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN1001
https://tldp.org/LDP/abs/html/bashver4.html#UNICODEREF
https://tldp.org/LDP/abs/html/internalvariables.html#APPREF
https://tldp.org/LDP/abs/html/exit-status.html#EXSREF
https://tldp.org/LDP/abs/html/exit-status.html#EXITSTATUSREF
https://tldp.org/LDP/abs/html/functions.html#FUNCTIONREF
https://tldp.org/LDP/abs/html/internalvariables.html#PROCCID
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN1071

83

command group.

(a=hello; echo $a)

A listing of commands within parentheses starts a subshell.

Variables inside parentheses, within the subshell, are not visible to the
rest of the script. The parent process, the script, cannot read variables
created in the child process, the subshell.

a=123
(a=321;)

echo "a = $a" # a = 123
"a" within parentheses acts like a local variable.

array initialization.

Array=(element1 element2 element3)

{xxx,yyy,zzz,...}

Brace expansion.

echo \"{These,words,are,quoted}\" # " prefix and suffix
"These" "words" "are" "quoted"

cat {file1,file2,file3} > combined_file
Concatenates the files file1, file2, and file3 into combined_file.

cp file22.{txt,backup}
Copies "file22.txt" to "file22.backup"

A command may act upon a comma-separated list of file specs
within braces. [5] Filename expansion (globbing) applies to the file specs
between the braces.

No spaces allowed within the braces unless the spaces are quoted or
escaped.

echo {file1,file2}\ :{\ A," B",' C'}

file1 : A file1 : B file1 : C file2 : A file2 : B file2 : C

{a..z}

https://tldp.org/LDP/abs/html/subshells.html#SUBSHELLSREF
https://tldp.org/LDP/abs/html/subshells.html#PARVIS
https://tldp.org/LDP/abs/html/subshells.html#PARVIS
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN1124
https://tldp.org/LDP/abs/html/globbingref.html

84

Extended Brace expansion.

echo {a..z} # a b c d e f g h i j k l m n o p q r s t u v w x y z
Echoes characters between a and z.

echo {0..3} # 0 1 2 3
Echoes characters between 0 and 3.

base64_charset=({A..Z} {a..z} {0..9} + / =)
Initializing an array, using extended brace expansion.
From vladz's "base64.sh" example script.

The {a..z} extended brace expansion construction is a feature introduced
in version 3 of Bash.

{}

Block of code [curly brackets]. Also referred to as an inline group, this
construct, in effect, creates an anonymous function (a function without a name).
However, unlike in a "standard" function, the variables inside a code block
remain visible to the remainder of the script.

bash$ { local a;
 a=123; }
bash: local: can only be used in a
function

a=123
{ a=321; }
echo "a = $a" # a = 321 (value inside code block)

Thanks, S.C.

The code block enclosed in braces may have I/O redirected to and from it.

Example 3-1. Code blocks and I/O redirection

#!/bin/bash
Reading lines in /etc/fstab.

File=/etc/fstab

{
read line1

https://tldp.org/LDP/abs/html/bashver3.html#BRACEEXPREF3
https://tldp.org/LDP/abs/html/bashver3.html#BASH3REF
https://tldp.org/LDP/abs/html/functions.html#FUNCTIONREF
https://tldp.org/LDP/abs/html/io-redirection.html#IOREDIRREF

85

read line2
} < $File

echo "First line in $File is:"
echo "$line1"
echo
echo "Second line in $File is:"
echo "$line2"

exit 0

Now, how do you parse the separate fields of each line?
Hint: use awk, or . . .
. . . Hans-Joerg Diers suggests using the "set" Bash builtin.

Example 3-2. Saving the output of a code block to a file

#!/bin/bash
rpm-check.sh

Queries an rpm file for description, listing,
#+ and whether it can be installed.
Saves output to a file.

This script illustrates using a code block.

SUCCESS=0
E_NOARGS=65

if [-z "$1"]
then
 echo "Usage: `basename $0` rpm-file"
 exit $E_NOARGS
fi

{ # Begin code block.
 echo
 echo "Archive Description:"
 rpm -qpi $1 # Query description.
 echo
 echo "Archive Listing:"
 rpm -qpl $1 # Query listing.
 echo
 rpm -i --test $1 # Query whether rpm file can be installed.
 if ["$?" -eq $SUCCESS]
 then

86

 echo "$1 can be installed."
 else
 echo "$1 cannot be installed."
 fi
 echo # End code block.
} > "$1.test" # Redirects output of everything in block to file.

echo "Results of rpm test in file $1.test"

See rpm man page for explanation of options.

exit 0

Unlike a command group within (parentheses), as above, a code block
enclosed by {braces} will not normally launch a subshell. [6]

It is possible to iterate a code block using a non-standard for-loop.

{}

placeholder for text. Used after xargs -i (replace strings option). The {} double
curly brackets are a placeholder for output text.

ls . | xargs -i -t cp ./{} $1
^^ ^^

From "ex42.sh" (copydir.sh) example.

{} \;

pathname. Mostly used in find constructs. This is not a shell builtin.

Definition: A pathname is a filename that includes the complete path. As an
example, /home/bozo/Notes/Thursday/schedule.txt. This is sometimes referred to
as the absolute path.

The ";" ends the -exec option of a find command sequence. It needs to be
escaped to protect it from interpretation by the shell.

[]

test.

Test expression between []. Note that [is part of the shell builtin test (and a
synonym for it), not a link to the external command /usr/bin/test.

[[]]

test.

https://tldp.org/LDP/abs/html/subshells.html#SUBSHELLSREF
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN1199
https://tldp.org/LDP/abs/html/loops1.html#ITERATIONREF
https://tldp.org/LDP/abs/html/loops1.html#NODODONE
https://tldp.org/LDP/abs/html/moreadv.html#XARGSCURLYREF
https://tldp.org/LDP/abs/html/moreadv.html#FINDREF
https://tldp.org/LDP/abs/html/internal.html#BUILTINREF
https://tldp.org/LDP/abs/html/internalvariables.html#PATHREF
https://tldp.org/LDP/abs/html/tests.html#IFTHEN
https://tldp.org/LDP/abs/html/testconstructs.html#TTESTREF

87

Test expression between [[]]. More flexible than the single-bracket [] test, this is
a shell keyword.

See the discussion on the [[...]] construct.

[]

array element.

In the context of an array, brackets set off the numbering of each element of that
array.

Array[1]=slot_1
echo ${Array[1]}

[]

range of characters.

As part of a regular expression, brackets delineate a range of characters to
match.

$[...]

integer expansion.

Evaluate integer expression between $[].

a=3
b=7

echo $[$a+$b] # 10
echo $[$a*$b] # 21

Note that this usage is deprecated, and has been replaced by the ((...
)) construct.

(())

integer expansion.

Expand and evaluate integer expression between (()).

See the discussion on the ((...)) construct.

> &> >& >> < <>

https://tldp.org/LDP/abs/html/internal.html#KEYWORDREF
https://tldp.org/LDP/abs/html/testconstructs.html#DBLBRACKETS
https://tldp.org/LDP/abs/html/arrays.html#ARRAYREF
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF
https://tldp.org/LDP/abs/html/x17129.html#BRACKETSREF
https://tldp.org/LDP/abs/html/dblparens.html
https://tldp.org/LDP/abs/html/dblparens.html
https://tldp.org/LDP/abs/html/dblparens.html

88

redirection.

scriptname >filename redirects the output of scriptname to file filename.
Overwrite filename if it already exists.

command &>filename redirects both the stdout and
the stderr of command to filename.

This is useful for suppressing output when testing for a condition. For
example, let us test whether a certain command exists.

bash$ type bogus_command &>/dev/null

bash$ echo $?
1

Or in a script:

command_test () { type "$1" &>/dev/null; }
^

cmd=rmdir # Legitimate command.
command_test $cmd; echo $? # 0

cmd=bogus_command # Illegitimate command
command_test $cmd; echo $? # 1

command >&2 redirects stdout of command to stderr.

scriptname >>filename appends the output of scriptname to file filename.
If filename does not already exist, it is created.

[i]<>filename opens file filename for reading and writing, and assigns file
descriptor i to it. If filename does not exist, it is created.

process substitution.

(command)>

<(command)

https://tldp.org/LDP/abs/html/io-redirection.html#IOREDIRREF
https://tldp.org/LDP/abs/html/ioredirintro.html#STDINOUTDEF
https://tldp.org/LDP/abs/html/io-redirection.html#FDREF
https://tldp.org/LDP/abs/html/io-redirection.html#FDREF
https://tldp.org/LDP/abs/html/process-sub.html#PROCESSSUBREF

89

In a different context, the "<" and ">" characters act as string comparison
operators.

In yet another context, the "<" and ">" characters act as integer comparison
operators. See also Example 16-9.

<<

redirection used in a here document.

<<<

redirection used in a here string.

<, >

ASCII comparison.

veg1=carrots
veg2=tomatoes

if [["$veg1" < "$veg2"]]
then
 echo "Although $veg1 precede $veg2 in the dictionary,"
 echo -n "this does not necessarily imply anything "
 echo "about my culinary preferences."
else
 echo "What kind of dictionary are you using, anyhow?"
fi

\<, \>

word boundary in a regular expression.

bash$ grep '\<the\>' textfile

|

pipe. Passes the output (stdout) of a previous command to the input (stdin) of
the next one, or to the shell. This is a method of chaining commands together.

echo ls -l | sh
Passes the output of "echo ls -l" to the shell,
#+ with the same result as a simple "ls -l".

cat *.lst | sort | uniq

https://tldp.org/LDP/abs/html/comparison-ops.html#LTREF
https://tldp.org/LDP/abs/html/comparison-ops.html#SCOMPARISON1
https://tldp.org/LDP/abs/html/comparison-ops.html#SCOMPARISON1
https://tldp.org/LDP/abs/html/comparison-ops.html#INTLT
https://tldp.org/LDP/abs/html/comparison-ops.html#ICOMPARISON1
https://tldp.org/LDP/abs/html/comparison-ops.html#ICOMPARISON1
https://tldp.org/LDP/abs/html/moreadv.html#EX45
https://tldp.org/LDP/abs/html/here-docs.html#HEREDOCREF
https://tldp.org/LDP/abs/html/x17837.html#HERESTRINGSREF
https://tldp.org/LDP/abs/html/comparison-ops.html#LTREF
https://tldp.org/LDP/abs/html/x17129.html#ANGLEBRAC
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF

90

Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe, as a classic method of interprocess communication, sends the stdout of
one process to the stdin of another. In a typical case, a command, such
as cat or echo, pipes a stream of data to a filter, a command that transforms its
input for processing. [7]

cat $filename1 $filename2 | grep $search_word

For an interesting note on the complexity of using UNIX pipes, see the UNIX
FAQ, Part 3.

The output of a command or commands may be piped to a script.

#!/bin/bash
uppercase.sh : Changes input to uppercase.

tr 'a-z' 'A-Z'
Letter ranges must be quoted
#+ to prevent filename generation from single-letter filenames.

exit 0

Now, let us pipe the output of ls -l to this script.

bash$ ls -l | ./uppercase.sh
-RW-RW-R-- 1 BOZO BOZO 109 APR 7 19:49 1.TXT
 -RW-RW-R-- 1 BOZO BOZO 109 APR 14 16:48 2.TXT
 -RW-R--R-- 1 BOZO BOZO 725 APR 20 20:56 DATA-FILE

The stdout of each process in a pipe must be read as the stdin of the
next. If this is not the case, the data stream will block, and the pipe will not
behave as expected.

cat file1 file2 | ls -l | sort
The output from "cat file1 file2" disappears.

A pipe runs as a child process, and therefore cannot alter script variables.

variable="initial_value"
echo "new_value" | read variable
echo "variable = $variable" # variable = initial_value

If one of the commands in the pipe aborts, this prematurely terminates

https://tldp.org/LDP/abs/html/special-chars.html#PROCESSREF
https://tldp.org/LDP/abs/html/basic.html#CATREF
https://tldp.org/LDP/abs/html/internal.html#ECHOREF
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN1564
http://www.faqs.org/faqs/unix-faq/faq/part3/
http://www.faqs.org/faqs/unix-faq/faq/part3/
https://tldp.org/LDP/abs/html/othertypesv.html#CHILDREF

91

execution of the pipe. Called a broken pipe, this condition sends
a SIGPIPE signal.

>|

force redirection (even if the noclobber option is set). This will forcibly
overwrite an existing file.

||

OR logical operator. In a test construct, the || operator causes a return
of 0 (success) if either of the linked test conditions is true.

&

Run job in background. A command followed by an & will run in the
background.

bash$ sleep 10 &
[1] 850
[1]+ Done sleep 10

Within a script, commands and even loops may run in the background.

Example 3-3. Running a loop in the background

#!/bin/bash
background-loop.sh

for i in 1 2 3 4 5 6 7 8 9 10 # First loop.
do
 echo -n "$i "
done & # Run this loop in background.
 # Will sometimes execute after second loop.

echo # This 'echo' sometimes will not display.

for i in 11 12 13 14 15 16 17 18 19 20 # Second loop.
do
 echo -n "$i "
done

echo # This 'echo' sometimes will not display.

==

https://tldp.org/LDP/abs/html/debugging.html#SIGNALD
https://tldp.org/LDP/abs/html/options.html#NOCLOBBERREF
https://tldp.org/LDP/abs/html/ops.html#ORREF
https://tldp.org/LDP/abs/html/testconstructs.html#TESTCONSTRUCTS1
https://tldp.org/LDP/abs/html/loops1.html#FORLOOPREF1

92

The expected output from the script:
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20

Sometimes, though, you get:
11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 6 7 8 9 10 bozo $
(The second 'echo' doesn't execute. Why?)

Occasionally also:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(The first 'echo' doesn't execute. Why?)

Very rarely something like:
11 12 13 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20
The foreground loop preempts the background one.

exit 0

Nasimuddin Ansari suggests adding sleep 1
#+ after the echo -n "$i" in lines 6 and 14,
#+ for some real fun.

A command run in the background within a script may cause the script to
hang, waiting for a keystroke. Fortunately, there is a remedy for this.

&&

AND logical operator. In a test construct, the && operator causes a return
of 0 (success) only if both the linked test conditions are true.

-

option, prefix. Option flag for a command or filter. Prefix for an operator. Prefix
for a default parameter in parameter substitution.

COMMAND -[Option1][Option2][...]

ls -al

sort -dfu $filename

if [$file1 -ot $file2]
then # ^
 echo "File $file1 is older than $file2."
fi

https://tldp.org/LDP/abs/html/x9644.html#WAITHANG
https://tldp.org/LDP/abs/html/ops.html#LOGOPS1
https://tldp.org/LDP/abs/html/testconstructs.html#TESTCONSTRUCTS1
https://tldp.org/LDP/abs/html/parameter-substitution.html#DEFPARAM1
https://tldp.org/LDP/abs/html/parameter-substitution.html#PARAMSUBREF

93

if ["$a" -eq "$b"]
then # ^
 echo "$a is equal to $b."
fi

if ["$c" -eq 24 -a "$d" -eq 47]
then # ^ ^
 echo "$c equals 24 and $d equals 47."
fi

param2=${param1:-$DEFAULTVAL}
^

--

The double-dash -- prefixes long (verbatim) options to commands.

sort --ignore-leading-blanks

Used with a Bash builtin, it means the end of options to that particular command.

This provides a handy means of removing files whose names begin with a
dash.

bash$ ls -l
-rw-r--r-- 1 bozo bozo 0 Nov 25 12:29 -badname

bash$ rm -- -badname

bash$ ls -l
total 0

The double-dash is also used in conjunction with set.

set -- $variable (as in Example 15-18)

-

redirection from/to stdin or stdout [dash].

bash$ cat -
abc

https://tldp.org/LDP/abs/html/internal.html#BUILTINREF
https://tldp.org/LDP/abs/html/internal.html#SETREF
https://tldp.org/LDP/abs/html/internal.html#SETPOS

94

abc

...

Ctl-D

As expected, cat - echoes stdin, in this case keyboarded user input, to stdout.
But, does I/O redirection using - have real-world applications?

(cd /source/directory && tar cf - .) | (cd /dest/directory && tar xpvf -)
Move entire file tree from one directory to another
[courtesy Alan Cox <a.cox@swansea.ac.uk>, with a minor change]

1) cd /source/directory
Source directory, where the files to be moved are.
2) &&
"And-list": if the 'cd' operation successful,
then execute the next command.
3) tar cf - .
The 'c' option 'tar' archiving command creates a new archive,
the 'f' (file) option, followed by '-' designates the target file
as stdout, and do it in current directory tree ('.').
4) |
Piped to ...
5) (...)
a subshell
6) cd /dest/directory
Change to the destination directory.
7) &&
"And-list", as above
8) tar xpvf -
Unarchive ('x'), preserve ownership and file permissions ('p'),
and send verbose messages to stdout ('v'),
reading data from stdin ('f' followed by '-').

Note that 'x' is a command, and 'p', 'v', 'f' are options.

Whew!

More elegant than, but equivalent to:
cd source/directory
tar cf - . | (cd ../dest/directory; tar xpvf -)

Also having same effect:

95

cp -a /source/directory/* /dest/directory
Or:
cp -a /source/directory/* /source/directory/.[^.]* /dest/directory
If there are hidden files in /source/directory.

bunzip2 -c linux-2.6.16.tar.bz2 | tar xvf -
--uncompress tar file-- | --then pass it to "tar"--
If "tar" has not been patched to handle "bunzip2",
#+ this needs to be done in two discrete steps, using a pipe.
The purpose of the exercise is to unarchive "bzipped" kernel source.

Note that in this context the "-" is not itself a Bash operator, but rather an option
recognized by certain UNIX utilities that write to stdout, such as tar, cat, etc.

bash$ echo "whatever" | cat -
whatever

Where a filename is expected, - redirects output to stdout (sometimes seen
with tar cf), or accepts input from stdin, rather than from a file. This is a method
of using a file-oriented utility as a filter in a pipe.

bash$ file
Usage: file [-bciknvzL] [-f namefile] [-m magicfiles] file...

By itself on the command-line, file fails with an error message.

Add a "-" for a more useful result. This causes the shell to await user input.

bash$ file -
abc
standard input: ASCII text

bash$ file -
#!/bin/bash
standard input: Bourne-Again shell script text executable

Now the command accepts input from stdin and analyzes it.

The "-" can be used to pipe stdout to other commands. This permits such stunts
as prepending lines to a file.

https://tldp.org/LDP/abs/html/filearchiv.html#FILEREF
https://tldp.org/LDP/abs/html/assortedtips.html#PREPENDREF

96

Using diff to compare a file with a section of another:

grep Linux file1 | diff file2 -

Finally, a real-world example using - with tar.

Example 3-4. Backup of all files changed in last day

#!/bin/bash

Backs up all files in current directory modified within last 24 hours
#+ in a "tarball" (tarred and gzipped file).

BACKUPFILE=backup-$(date +%m-%d-%Y)
Embeds date in backup filename.
Thanks, Joshua Tschida, for the idea.
archive=${1:-$BACKUPFILE}
If no backup-archive filename specified on command-line,
#+ it will default to "backup-MM-DD-YYYY.tar.gz."

tar cvf - `find . -mtime -1 -type f -print` > $archive.tar
gzip $archive.tar
echo "Directory $PWD backed up in archive file \"$archive.tar.gz\"."

Stephane Chazelas points out that the above code will fail
#+ if there are too many files found
#+ or if any filenames contain blank characters.

He suggests the following alternatives:

find . -mtime -1 -type f -print0 | xargs -0 tar rvf "$archive.tar"
using the GNU version of "find".

find . -mtime -1 -type f -exec tar rvf "$archive.tar" '{}' \;
portable to other UNIX flavors, but much slower.

exit 0

Filenames beginning with "-" may cause problems when coupled with
the "-" redirection operator. A script should check for this and add an
appropriate prefix to such filenames, for example ./-FILENAME, $PWD/-
FILENAME, or $PATHNAME/-FILENAME.

https://tldp.org/LDP/abs/html/filearchiv.html#DIFFREF
https://tldp.org/LDP/abs/html/filearchiv.html#TARREF

97

If the value of a variable begins with a -, this may likewise create
problems.

var="-n"
echo $var
Has the effect of "echo -n", and outputs nothing.

-

previous working directory. A cd - command changes to the previous working
directory. This uses the $OLDPWD environmental variable.

Do not confuse the "-" used in this sense with the "-" redirection operator
just discussed. The interpretation of the "-" depends on the context in
which it appears.

-

Minus. Minus sign in an arithmetic operation.

=

Equals. Assignment operator

a=28
echo $a # 28

In a different context, the "=" is a string comparison operator.

+

Plus. Addition arithmetic operator.

In a different context, the + is a Regular Expression operator.

+

Option. Option flag for a command or filter.

Certain commands and builtins use the + to enable certain options and the - to
disable them. In parameter substitution, the + prefixes an alternate value that a
variable expands to.

%

modulo. Modulo (remainder of a division) arithmetic operation.

https://tldp.org/LDP/abs/html/internalvariables.html#OLDPWD
https://tldp.org/LDP/abs/html/othertypesv.html#ENVREF
https://tldp.org/LDP/abs/html/ops.html#AROPS1
https://tldp.org/LDP/abs/html/varassignment.html#EQREF
https://tldp.org/LDP/abs/html/comparison-ops.html#EQUALSIGNREF
https://tldp.org/LDP/abs/html/comparison-ops.html#SCOMPARISON1
https://tldp.org/LDP/abs/html/ops.html#AROPS1
https://tldp.org/LDP/abs/html/x17129.html#PLUSREF
https://tldp.org/LDP/abs/html/regexp.html
https://tldp.org/LDP/abs/html/internal.html#BUILTINREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#PARAMSUBREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#PARAMALTV
https://tldp.org/LDP/abs/html/ops.html#MODULOREF
https://tldp.org/LDP/abs/html/ops.html#AROPS1

98

let "z = 5 % 3"
echo $z # 2

In a different context, the % is a pattern matching operator.

~

home directory [tilde]. This corresponds to the $HOME internal
variable. ~bozo is bozo's home directory, and ls ~bozo lists the contents of
it. ~/ is the current user's home directory, and ls ~/ lists the contents of it.

bash$ echo ~bozo
/home/bozo

bash$ echo ~
/home/bozo

bash$ echo ~/
/home/bozo/

bash$ echo ~:
/home/bozo:

bash$ echo ~nonexistent-user
~nonexistent-user

~+

current working directory. This corresponds to the $PWD internal variable.

~-

previous working directory. This corresponds to the $OLDPWD internal
variable.

=~

regular expression match. This operator was introduced with version 3 of Bash.

^

beginning-of-line. In a regular expression, a "^" addresses the beginning of a
line of text.

^, ^^

https://tldp.org/LDP/abs/html/parameter-substitution.html#PCTPATREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#PSUB2
https://tldp.org/LDP/abs/html/internalvariables.html#HOMEDIRREF
https://tldp.org/LDP/abs/html/internalvariables.html#PWDREF
https://tldp.org/LDP/abs/html/internalvariables.html#OLDPWD
https://tldp.org/LDP/abs/html/bashver3.html#REGEXMATCHREF
https://tldp.org/LDP/abs/html/bashver3.html#BASH3REF
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF
https://tldp.org/LDP/abs/html/x17129.html#CARETREF
https://tldp.org/LDP/abs/html/x17129.html#CARETREF

99

Uppercase conversion in parameter substitution (added in version 4 of
Bash).

Control Characters

change the behavior of the terminal or text display. A control character is
a CONTROL + key combination (pressed simultaneously). A control character
may also be written in octal or hexadecimal notation, following an escape.

Control characters are not normally useful inside a script.

 Ctl-A

Moves cursor to beginning of line of text (on the command-line).

 Ctl-B

Backspace (nondestructive).

 Ctl-C

Break. Terminate a foreground job.

 Ctl-D

Log out from a shell (similar to exit).

EOF (end-of-file). This also terminates input from stdin.

When typing text on the console or in an xterm window, Ctl-D erases the
character under the cursor. When there are no characters present, Ctl-
D logs out of the session, as expected. In an xterm window, this has the
effect of closing the window.

 Ctl-E

Moves cursor to end of line of text (on the command-line).

 Ctl-F

Moves cursor forward one character position (on the command-line).

 Ctl-G

BEL. On some old-time teletype terminals, this would actually ring a bell.
In an xterm it might beep.

https://tldp.org/LDP/abs/html/bashver4.html#CASEMODPARAMSUB
https://tldp.org/LDP/abs/html/bashver4.html#BASH4REF
https://tldp.org/LDP/abs/html/exit-status.html#EXITCOMMANDREF

100

 Ctl-H

Rubout (destructive backspace). Erases characters the cursor backs over
while backspacing.

#!/bin/bash
Embedding Ctl-H in a string.

a="^H^H" # Two Ctl-H's -- backspaces
 # ctl-V ctl-H, using vi/vim
echo "abcdef" # abcdef
echo
echo -n "abcdef$a " # abcd f
Space at end ^ ^ Backspaces twice.
echo
echo -n "abcdef$a" # abcdef
No space at end ^ Doesn't backspace (why?).
 # Results may not be quite as expected.
echo; echo

Constantin Hagemeier suggests trying:
a=$'\010\010'
a=$'\b\b'
a=$'\x08\x08'
But, this does not change the results.

Now, try this.

rubout="^H^H^H^H^H" # 5 x Ctl-H.

echo -n "12345678"
sleep 2
echo -n "$rubout"
sleep 2

 Ctl-I

Horizontal tab.

 Ctl-J

Newline (line feed). In a script, may also be expressed in octal notation --
'\012' or in hexadecimal -- '\x0a'.

101

 Ctl-K

Vertical tab.

When typing text on the console or in an xterm window, Ctl-K erases from
the character under the cursor to end of line. Within a script, Ctl-K may
behave differently, as in Lee Lee Maschmeyer's example, below.

 Ctl-L

Formfeed (clear the terminal screen). In a terminal, this has the same
effect as the clear command. When sent to a printer, a Ctl-L causes an
advance to end of the paper sheet.

 Ctl-M

Carriage return.

#!/bin/bash
Thank you, Lee Maschmeyer, for this example.

read -n 1 -s -p \
$'Control-M leaves cursor at beginning of this line. Press Enter. \x0d'
 # Of course, '0d' is the hex equivalent of Control-M.
echo >&2 # The '-s' makes anything typed silent,
 #+ so it is necessary to go to new line explicitly.

read -n 1 -s -p $'Control-J leaves cursor on next line. \x0a'
 # '0a' is the hex equivalent of Control-J, linefeed.
echo >&2

read -n 1 -s -p $'And Control-K\x0bgoes straight down.'
echo >&2 # Control-K is vertical tab.

A better example of the effect of a vertical tab is:

var=$'\x0aThis is the bottom line\x0bThis is the top line\x0a'
echo "$var"
This works the same way as the above example. However:
echo "$var" | col
This causes the right end of the line to be higher than the left end.
It also explains why we started and ended with a line feed --
#+ to avoid a garbled screen.

https://tldp.org/LDP/abs/html/terminalccmds.html#CLEARREF

102

As Lee Maschmeyer explains:

In the [first vertical tab example] . . . the vertical tab
#+ makes the printing go straight down without a carriage return.
This is true only on devices, such as the Linux console,
#+ that can't go "backward."
The real purpose of VT is to go straight UP, not down.
It can be used to print superscripts on a printer.
The col utility can be used to emulate the proper behavior of VT.

exit 0

 Ctl-N

Erases a line of text recalled from history buffer [8] (on the command-line).

 Ctl-O

Issues a newline (on the command-line).

 Ctl-P

Recalls last command from history buffer (on the command-line).

 Ctl-Q

Resume (XON).

This resumes stdin in a terminal.

 Ctl-R

Backwards search for text in history buffer (on the command-line).

 Ctl-S

Suspend (XOFF).

This freezes stdin in a terminal. (Use Ctl-Q to restore input.)

 Ctl-T

Reverses the position of the character the cursor is on with the previous
character (on the command-line).

 Ctl-U

https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN2107

103

Erase a line of input, from the cursor backward to beginning of line. In
some settings, Ctl-U erases the entire line of input, regardless of cursor
position.

 Ctl-V

When inputting text, Ctl-V permits inserting control characters. For
example, the following two are equivalent:

echo -e '\x0a'
echo <Ctl-V><Ctl-J>

Ctl-V is primarily useful from within a text editor.

 Ctl-W

When typing text on the console or in an xterm window, Ctl-W erases from
the character under the cursor backwards to the first instance
of whitespace. In some settings, Ctl-W erases backwards to first non-
alphanumeric character.

 Ctl-X

In certain word processing programs, Cuts highlighted text and copies
to clipboard.

 Ctl-Y

Pastes back text previously erased (with Ctl-U or Ctl-W).

 Ctl-Z

Pauses a foreground job.

Substitute operation in certain word processing applications.

EOF (end-of-file) character in the MSDOS filesystem.

Whitespace

functions as a separator between commands and/or variables. Whitespace
consists of either spaces, tabs, blank lines, or any combination thereof. [9] In
some contexts, such as variable assignment, whitespace is not permitted, and
results in a syntax error.

https://tldp.org/LDP/abs/html/special-chars.html#WHITESPACEREF
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN2198
https://tldp.org/LDP/abs/html/gotchas.html#WSBAD

104

Blank lines have no effect on the action of a script, and are therefore useful for
visually separating functional sections.

$IFS, the special variable separating fields of input to certain commands. It
defaults to whitespace.

Definition: A field is a discrete chunk of data expressed as a string of
consecutive characters. Separating each field from adjacent fields is
either whitespace or some other designated character (often determined by
the $IFS). In some contexts, a field may be called a record.

To preserve whitespace within a string or in a variable, use quoting.

UNIX filters can target and operate on whitespace using the POSIX character
class [:space:].

Decision making and Loop control

Decision making

In this chapter, we will understand shell decision-making in Unix. While writing a shell
script, there may be a situation when you need to adopt one path out of the given two
paths. So you need to make use of conditional statements that allow your program to
make correct decisions and perform the right actions.

Unix Shell supports conditional statements which are used to perform different actions
based on different conditions. We will now understand two decision-making statements
here −

 The if...else statement

 The case...esac statement

The if...else statements

If else statements are useful decision-making statements which can be used to select
an option from a given set of options.

Unix Shell supports following forms of if…else statement −

 if...fi statement

 if...else...fi statement

 if...elif...else...fi statement

Most of the if statements check relations using relational operators discussed in the
previous chapter.

https://tldp.org/LDP/abs/html/internalvariables.html#IFSREF
https://tldp.org/LDP/abs/html/quoting.html#QUOTINGREF
https://tldp.org/LDP/abs/html/special-chars.html#FILTERDEF
https://tldp.org/LDP/abs/html/x17129.html#POSIXREF
https://tldp.org/LDP/abs/html/x17129.html#WSPOSIX
https://www.tutorialspoint.com/unix/if-fi-statement.htm
https://www.tutorialspoint.com/unix/if-else-statement.htm
https://www.tutorialspoint.com/unix/if-elif-statement.htm

105

The case...esac Statement

You can use multiple if...elif statements to perform a multiway branch. However, this is
not always the best solution, especially when all of the branches depend on the value
of a single variable.

Unix Shell supports case...esac statement which handles exactly this situation, and it
does so more efficiently than repeated if...elif statements.

There is only one form of case...esac statement which has been described in detail
here −

 case...esac statement

The case...esac statement in the Unix shell is very similar to
the switch...case statement we have in other programming languages
like C or C++ and PERL, etc.

Loop Control

In this chapter, we will discuss shell loops in Unix. A loop is a powerful programming
tool that enables you to execute a set of commands repeatedly. In this chapter, we will
examine the following types of loops available to shell programmers −

 The while loop

 The for loop

 The until loop

 The select loop

You will use different loops based on the situation. For example, the while loop
executes the given commands until the given condition remains true; the until loop
executes until a given condition becomes true.

Once you have good programming practice you will gain the expertise and thereby,
start using appropriate loop based on the situation. Here, while and for loops are
available in most of the other programming languages like C, C++ and PERL, etc.

Nesting Loops

All the loops support nesting concept which means you can put one loop inside another
similar one or different loops. This nesting can go up to unlimited number of times
based on your requirement.

Here is an example of nesting while loop. The other loops can be nested based on the
programming requirement in a similar way −

Nesting while Loops

https://www.tutorialspoint.com/unix/case-esac-statement.htm
https://www.tutorialspoint.com/unix/while-loop.htm
https://www.tutorialspoint.com/unix/for-loop.htm
https://www.tutorialspoint.com/unix/until-loop.htm
https://www.tutorialspoint.com/unix/select-loop.htm

106

It is possible to use a while loop as part of the body of another while loop.

Syntax

while command1 ; # this is loop1, the outer loop
do
 Statement(s) to be executed if command1 is true

 while command2 ; # this is loop2, the inner loop
 do
 Statement(s) to be executed if command2 is true
 done

 Statement(s) to be executed if command1 is true
done

Example

Here is a simple example of loop nesting. Let's add another countdown loop inside the
loop that you used to count to nine −

#!/bin/sh

a=0
while ["$a" -lt 10] # this is loop1
do
 b="$a"
 while ["$b" -ge 0] # this is loop2
 do
 echo -n "$b "
 b=`expr $b - 1`
 done
 echo
 a=`expr $a + 1`
done

This will produce the following result. It is important to note how echo -n works here.
Here -n option lets echo avoid printing a new line character.

0
1 0
2 1 0
3 2 1 0
4 3 2 1 0
5 4 3 2 1 0
6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
8 7 6 5 4 3 2 1 0

107

9 8 7 6 5 4 3 2 1 0

Controlling terminal input

Sessions and process groups have a few other characteristics.

 A session can have a single controlling terminal. This is usually the terminal
device (in the case of a terminal login) or pseudo-terminal device (in the case of
a network login) on which we log in.

 The session leader that establishes the connection to the controlling terminal is
called the controlling process.

 The process groups within a session can be divided into a single foreground
process group and one or more background process groups.

 If a session has a controlling terminal, it has a single foreground process group,
and all other process groups in the session are background process groups.

 Whenever we type the terminal's interrupt key (often DELETE or Control-C), this
causes the interrupt signal be sent to all processes in the foreground process
group.

 Whenever we type the terminal's quit key (often Control-backslash), this causes
the quit signal to be sent to all processes in the foreground process group.

 If a modem (or network) disconnect is detected by the terminal interface, the
hang-up signal is sent to the controlling process (the session leader).

These characteristics are shown in Figure 9.7.

Figure 9.7. Process groups and sessions showing controlling terminal

[View full size image]

http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi_knjige/pomocno/apue/APUE/0201433079/ch09lev1sec6.html#ch09fig07
http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi_knjige/pomocno/apue/APUE/0201433079/images/0201433079/graphics/09fig07_alt.gif;423615

108

Usually, we don't have to worry about the controlling terminal; it is established
automatically when we log in.

POSIX.1 leaves the choice of the mechanism used to allocate a controlling terminal up
to each individual implementation. We'll show the actual steps in Section 19.4.

Systems derived from UNIX System V allocate the controlling terminal for a session
when the session leader opens the first terminal device that is not already associated
with a session. This assumes that the call to open by the session leader does not
specify the O_NOCTTY flag (Section 3.3).

BSD-based systems allocate the controlling terminal for a session when the session
leader calls ioctl with a request argument of TIOCSCTTY (the third argument is a null
pointer). The session cannot already have a controlling terminal for this call to succeed.
(Normally, this call to ioctl follows a call to setsid, which guarantees that the process is a
session leader without a controlling terminal.) The POSIX.1 O_NOCTTY flag to open is
not used by BSD-based systems, except in compatibility-mode support for other
systems.

There are times when a program wants to talk to the controlling terminal, regardless of
whether the standard input or standard output is redirected. The way a program
guarantees that it is talking to the controlling terminal is to open the file /dev/tty. This
special file is a synonym within the kernel for the controlling terminal. Naturally, if the
program doesn't have a controlling terminal, the open of this device will fail.

http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi_knjige/pomocno/apue/APUE/0201433079/ch19lev1sec4.html#ch19lev1sec4
http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi_knjige/pomocno/apue/APUE/0201433079/ch03lev1sec3.html#ch03lev1sec3

109

The classic example is the getpass(3) function, which reads a password (with terminal
echoing turned off, of course). This function is called by the crypt(1) program and can
be used in a pipeline. For example,

 crypt < salaries | lpr

decrypts the file salaries and pipes the output to the print spooler. Because crypt reads
its input file on its standard input, the standard input can't be used to enter the
password. Also, crypt is designed so that we have to enter the encryption password
each time we run the program, to prevent us from saving the password in a file (which
could be a security hole).

trapping signals

In this chapter, we will discuss in detail about Signals and Traps in Unix.

Signals are software interrupts sent to a program to indicate that an important event
has occurred. The events can vary from user requests to illegal memory access errors.
Some signals, such as the interrupt signal, indicate that a user has asked the program
to do something that is not in the usual flow of control.

The following table lists out common signals you might encounter and want to use in
your programs −

Signal
Name

Signal
Number

Description

SIGHUP 1
Hang up detected on controlling terminal or death of controlling
process

SIGINT 2 Issued if the user sends an interrupt signal (Ctrl + C)

SIGQUIT 3 Issued if the user sends a quit signal (Ctrl + D)

SIGFPE 8 Issued if an illegal mathematical operation is attempted

SIGKILL 9 If a process gets this signal it must quit immediately and will not

110

perform any clean-up operations

SIGALRM 14 Alarm clock signal (used for timers)

SIGTERM 15 Software termination signal (sent by kill by default)

List of Signals

There is an easy way to list down all the signals supported by your system. Just issue
the kill -l command and it would display all the supported signals −

$ kill -l
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT
17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN
35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4
39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12
47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14
51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6
59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

The actual list of signals varies between Solaris, HP-UX, and Linux.

Default Actions

Every signal has a default action associated with it. The default action for a signal is
the action that a script or program performs when it receives a signal.

Some of the possible default actions are −

 Terminate the process.

 Ignore the signal.

 Dump core. This creates a file called core containing the memory image of the
process when it received the signal.

 Stop the process.

111

 Continue a stopped process.

Sending Signals

There are several methods of delivering signals to a program or script. One of the most
common is for a user to type CONTROL-C or the INTERRUPT key while a script is
executing.

When you press the Ctrl+C key, a SIGINT is sent to the script and as per defined
default action script terminates.

The other common method for delivering signals is to use the kill command, the
syntax of which is as follows −

$ kill -signal pid

Here signal is either the number or name of the signal to deliver and pid is the process
ID that the signal should be sent to. For Example −

$ kill -1 1001

The above command sends the HUP or hang-up signal to the program that is running
with process ID 1001. To send a kill signal to the same process, use the following
command −

$ kill -9 1001

This kills the process running with process ID 1001.

Trapping Signals

When you press the Ctrl+C or Break key at your terminal during execution of a shell
program, normally that program is immediately terminated, and your command prompt
returns. This may not always be desirable. For instance, you may end up leaving a
bunch of temporary files that won't get cleaned up.

Trapping these signals is quite easy, and the trap command has the following syntax −

$ trap commands signals

Here command can be any valid Unix command, or even a user-defined function, and
signal can be a list of any number of signals you want to trap.

There are two common uses for trap in shell scripts −

 Clean up temporary files

 Ignore signals

Cleaning Up Temporary Files

As an example of the trap command, the following shows how you can remove some
files and then exit if someone tries to abort the program from the terminal −

112

$ trap "rm -f $WORKDIR/work1$$ $WORKDIR/dataout$$; exit" 2

From the point in the shell program that this trap is executed, the two
files work1$$ and dataout$$ will be automatically removed if signal number 2 is
received by the program.

Hence, if the user interrupts the execution of the program after this trap is executed,
you can be assured that these two files will be cleaned up. The exit command that
follows the rm is necessary because without it, the execution would continue in the
program at the point that it left off when the signal was received.

Signal number 1 is generated for hangup. Either someone intentionally hangs up the
line or the line gets accidentally disconnected.

You can modify the preceding trap to also remove the two specified files in this case by
adding signal number 1 to the list of signals −

$ trap "rm $WORKDIR/work1$$ $WORKDIR/dataout$$; exit" 1 2

Now these files will be removed if the line gets hung up or if the Ctrl+C key gets
pressed.

The commands specified to trap must be enclosed in quotes, if they contain more than
one command. Also note that the shell scans the command line at the time that the
trap command gets executed and also when one of the listed signals is received.

Thus, in the preceding example, the value of WORKDIR and $$ will be substituted at
the time that the trap command is executed. If you wanted this substitution to occur at
the time that either signal 1 or 2 was received, you can put the commands inside single
quotes −

$ trap 'rm $WORKDIR/work1$$ $WORKDIR/dataout$$; exit' 1 2

Ignoring Signals

If the command listed for trap is null, the specified signal will be ignored when received.
For example, the command −

$ trap '' 2

This specifies that the interrupt signal is to be ignored. You might want to ignore certain
signals when performing an operation that you don't want to be interrupted. You can
specify multiple signals to be ignored as follows −

$ trap '' 1 2 3 15

Note that the first argument must be specified for a signal to be ignored and is not
equivalent to writing the following, which has a separate meaning of its own −

$ trap 2

If you ignore a signal, all subshells also ignore that signal. However, if you specify an
action to be taken on the receipt of a signal, all subshells will still take the default action
on receipt of that signal.

113

Resetting Traps

After you've changed the default action to be taken on receipt of a signal, you can
change it back again with the trap if you simply omit the first argument; so −

$ trap 1 2

Arrays

Arrays are used to store a series of values in an indexed list. Items in an array are
stored and retrieved using an index. Note that Arrays are not supported by the original
Bourne Shell, but are supported by bash and other newer shells.

File Test Operators

Shell scripts often need to check various properties of files as a part of the control flow.
Unix provides a number of options for this purpose.

 File existence checks:

 -f file True if the file exists and is an ordinary file.

 -d file True if the file exists and is a directory.

 -s file True if the file exists and is not empty.

 -c file True if the file exists and is a character device file.

 -b file True if the file exists and is a block devise file.

 File access checks:

 -r file True if the file exists and has read permission to it.

 -w file True if the file exists and has a write permission to it.

 -x file True if the file exists and has a execute permission to it.

String Test Operators

Unix commands often need to test the various properties of string variables as a part of
the control flow.

Unix provides a number of options for this:

114

 [string1=string2] True if string1 and string2 are same.

 [string1!=string2] True if string1 is not equal to string2.

 [-n string] True if the string is not zero.

 [-z string] True if the string is zero.

 [string] True if the string is not empty.

Special Variables

While running scripts, Unix provides a number of predefined variables that can be used
to get information from the environment.

Unix also provides a number of special symbols with additional information:

 $# Total number of positional parameters.

 $@ Represents all the parameters i.e. $1 to the end.

 $? Pass or fail status of the last command executed.

 $$ Process id of the currently running shell.

 $! Process id of the last run background process.

115

Unit-III

Portability With C

Command line Argument

I'm trying to write a program that can compare two files line by line, word by word, or
character by character in C. It has to be able to read in command line options -l -w -i or -
-...

 if the option is -l it compares the files line by line.

 if the option is -w it compares the files word by word.

 if the options is -- it automatically assumes that the next arg is the first filename.

 if the option is -i it compares them in a case insensitive manner.

 defaults to comparing the files character by character.

It's not supposed to matter how many time the options are input as long as -w and -l
aren't inputted at the same time and there are no more or less than 2 files.

I don't even know where to begin with parsing the command line arguments. PLEASE
HELP :(

So this is the code that I came up with for everything. I haven't error checked it quite yet,
but I was wondering if I'm writing things in an overcomplicated manner?

/*
 * Functions to compare files.
 */
int compare_line();
int compare_word();
int compare_char();
int case_insens();

/*
 * Program to compare the information in two files and print message saying
 * whether or not this was successful.
 */
int main(int argc, char* argv[])
{
/*Loop counter*/

116

 size_t i = 0;

 /*Variables for functions*/
 int caseIns = 0;
 int line = 0;
 int word = 0;

 /*File pointers*/
 FILE *fp1, *fp2;

 /*
 * Read through command-line arguments for options.
 */
 for (i = 1; i < argc; i++) {
 printf("argv[%u] = %s\n", i, argv[i]);
 if (argv[i][0] == '-') {
 if (argv[i][1] == 'i')
 {
 caseIns = 1;
 }
 if (argv[i][1] == 'l')
 {
 line = 1;
 }
 if (argv[i][1] == 'w')
 {
 word = 1;
 }
 if (argv[i][1] == '-')
 {
 fp1 = argv[i][2];
 fp2 = argv[i][3];
 }
 else
 {
 printf("Invalid option.");
 return 2;
 }
 } else {
 fp1(argv[i]);
 fp2(argv[i][1]);
 }
 }

 /*
 * Check that files can be opened.

117

 */
 if(((fp1 = fopen(fp1, "rb")) == NULL) || ((fp2 = fopen(fp2, "rb")) == NULL))
 {
 perror("fopen()");
 return 3;
 }
 else{
 if (caseIns == 1)
 {
 if(line == 1 && word == 1)
 {
 printf("That is invalid.");
 return 2;
 }
 if(line == 1 && word == 0)
 {
 if(compare_line(case_insens(fp1, fp2)) == 0)
 return 0;
 }
 if(line == 0 && word == 1)
 {
 if(compare_word(case_insens(fp1, fp2)) == 0)
 return 0;
 }
 else
 {
 if(compare_char(case_insens(fp1,fp2)) == 0)
 return 0;
 }
 }
 else
 {
 if(line == 1 && word == 1)
 {
 printf("That is invalid.");
 return 2;
 }
 if(line == 1 && word == 0)
 {
 if(compare_line(fp1, fp2) == 0)
 return 0;
 }
 if(line == 0 && word == 1)
 {
 if(compare_word(fp1, fp2) == 0)
 return 0;

118

 }
 else
 {
 if(compare_char(fp1, fp2) == 0)
 return 0;
 }
 }

 }
 return 1;
 if(((fp1 = fclose(fp1)) == NULL) || (((fp2 = fclose(fp2)) == NULL)))
 {
 perror("fclose()");
 return 3;
 }
 else
 {
 fp1 = fclose(fp1);
 fp2 = fclose(fp2);
 }
}

/*
 * Function to compare two files line-by-line.
 */
int compare_line(FILE *fp1, FILE *fp2)
{
 /*Buffer variables to store the lines in the file*/
 char buff1 [LINESIZE];
 char buff2 [LINESIZE];

 /*Check that neither is the end of file*/
 while((!feof(fp1)) && (!feof(fp2)))
 {
 /*Go through files line by line*/
 fgets(buff1, LINESIZE, fp1);
 fgets(buff2, LINESIZE, fp2);
 }
 /*Compare files line by line*/
 if(strcmp(buff1, buff2) == 0)
 {
 printf("Files are equal.\n");
 return 0;
 }
 printf("Files are not equal.\n");
 return 1;

119

}

/*
 * Function to compare two files word-by-word.
 */
int compare_word(FILE *fp1, FILE *fp2)
{
 /*File pointers*/
 FILE *fp1, *fp2;

 /*Arrays to store words*/
 char fp1words[LINESIZE];
 char fp2words[LINESIZE];

 if(strtok(fp1, " ") == NULL || strtok(fp2, " ") == NULL)
 {
 printf("File is empty. Cannot compare.\n");
 return 0;
 }
 else
 {
 fp1words = strtok(fp1, " ");
 fp2words = strtok(fp2, " ");

 if(fp1words == fp2words)
 {
 fputs(fp1words);
 fputs(fp2words);
 printf("Files are equal.\n");
 return 0;
 }
 }
 return 1;
}

/*
 * Function to compare two files character by character.
 */
int compare_char(FILE *fp1,FILE *fp2)
{
 /*Variables to store the characters from both files*/
 int c;
 int d;

 /*Buffer variables to store chars*/
 char buff1 [LINESIZE];

120

 char buff2 [LINESIZE];

 while(((c = fgetc(fp1))!= EOF) && (((d = fgetc(fp2))!=EOF)))
 {
 if(c == d)
 {
 if((fscanf(fp1, "%c", buff1)) == (fscanf(fp2, "%c", buff2)))
 {

Background processes

A background process is a computer process that runs behind the scenes (i.e., in the

background) and without user intervention.[1] Typical tasks for these processes include

logging, system monitoring, scheduling,[2] and user notification.[3] The background

process usually is a child process created by a control process for processing a

computing task. After creation, the child process will run on its own, performing the task

independent of the control process, freeing the control process of performing that

task.[citation needed]

On a Windows system, a background process is either a computer program that does

not create a user interface, or a Windows service. The former are started just as any

other program is started, e.g., via Start menu. Windows services, on the other hand, are

started by Service Control Manager. In Windows Vista and later, they are run in a

separate session. There is no limit to how much a system service or background

process can use system resources. Indeed, in the Windows Server family of Microsoft

operating systems, background processes are expected to be the principal consumers

of system resources.[citation needed]

On a Unix or Unix-like system, a background process or job can be further identified as

one whose process group ID differs from its terminal group ID (TGID). (The TGID of a

process is the process ID of the process group leader that opened the terminal, which is

typically the login shell. The TGID identifies the control terminal of the process group.)

This type of process is unable to receive keyboard signals from its parent terminal, and

typically will not send output to that terminal.[4] This more technical definition does not

distinguish between whether or not the process can receive user intervention. Although

background processes are typically used for purposes needing few resources, any

process can be run in the background, and such a process will behave like any other

process, with the exceptions given above.

Windows services

In Windows NT family of operating systems, a Windows service is a dedicated

background process.[5] A Windows service must conform to the interface rules and

https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Background_process#cite_note-tlt-1
https://en.wikipedia.org/wiki/Background_process#cite_note-2
https://en.wikipedia.org/wiki/Background_process#cite_note-ios-3
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Windows_service
https://en.wikipedia.org/wiki/Start_menu
https://en.wikipedia.org/wiki/Service_Control_Manager
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Windows_Service_Hardening
https://en.wikipedia.org/wiki/Windows_Service_Hardening
https://en.wikipedia.org/wiki/Windows_Server
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Process_group
https://en.wikipedia.org/wiki/Background_process#cite_note-bash-4
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Background_process#cite_note-Services_snap-in-5

121

protocols of the Service Control Manager, the component responsible for managing

Windows services.[6]

Windows services can be configured to start when the operating system starts, and to

run in the background as long as Windows runs. Alternatively, they can be started

manually or by an event. Windows NT operating systems include numerous

services which run in context of three user accounts: System, Network

Service and Local Service. These Windows components are often associated with Host

Process for Windows Services: svchost.exe. Since Windows services operate in the

context of their own dedicated user accounts, they can operate when a user is not

logged on.

Before Windows Vista, services installed as "interactive services" could interact with

Windows desktop and show a graphical user interface. With Windows Vista, however,

interactive services became deprecated and ceased operating properly, as a result

of Windows Service Hardening.[7][8]

The three principal means of managing Windows services are:

 Services snap-in for Microsoft Management Console

 sc.exe

 Windows PowerShell

process synchronization

On the basis of synchronization, processes are categorized as one of the following two
types:

 Independent Process : Execution of one process does not affects the execution
of other processes.

 Cooperative Process : Execution of one process affects the execution of other
processes.

Process synchronization problem arises in the case of Cooperative process also because
resources are shared in Cooperative processes.

Race Condition

When more than one processes are executing the same code or accessing the same
memory or any shared variable in that condition there is a possibility that the output or the
value of the shared variable is wrong so for that all the processes doing the race to say
that my output is correct this condition known as a race condition. Several processes
access and process the manipulations over the same data concurrently, then the

https://en.wikipedia.org/wiki/Service_Control_Manager
https://en.wikipedia.org/wiki/Background_process#cite_note-Service_MSDN-6
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_components#Services
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_components#Services
https://en.wikipedia.org/wiki/User_account
https://en.wikipedia.org/wiki/Svchost.exe
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Desktop_metaphor
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Deprecated
https://en.wikipedia.org/wiki/Windows_Service_Hardening
https://en.wikipedia.org/wiki/Background_process#cite_note-7
https://en.wikipedia.org/wiki/Background_process#cite_note-7
https://en.wikipedia.org/wiki/Microsoft_Management_Console
https://en.wikipedia.org/wiki/Windows_PowerShell

122

outcome depends on the particular order in which the access takes place.
A race condition is a situation that may occur inside a critical section. This happens when
the result of multiple thread execution in the critical section differs according to the order
in which the threads execute.

Race conditions in critical sections can be avoided if the critical section is treated as an
atomic instruction. Also, proper thread synchronization using locks or atomic variables
can prevent race conditions.

Critical Section Problem

Critical section is a code segment that can be accessed by only one process at a time.
Critical section contains shared variables which need to be synchronized to maintain
consistency of data variables.

In the entry section, the process requests for entry in the Critical Section.

Any solution to the critical section problem must satisfy three requirements:

123

 Mutual Exclusion : If a process is executing in its critical section, then no other
process is allowed to execute in the critical section.

 Progress : If no process is executing in the critical section and other processes
are waiting outside the critical section, then only those processes that are not
executing in their remainder section can participate in deciding which will enter in
the critical section next, and the selection can not be postponed indefinitely.

 Bounded Waiting : A bound must exist on the number of times that other
processes are allowed to enter their critical sections after a process has made a
request to enter its critical section and before that request is granted.

Peterson’s Solution

Peterson‘s Solution is a classical software based solution to the critical section problem.
In Peterson‘s solution, we have two shared variables:

 boolean flag[i] :Initialized to FALSE, initially no one is interested in entering the
critical section

 int turn : The process whose turn is to enter the critical section.

124

Peterson’s Solution preserves all three conditions :

 Mutual Exclusion is assured as only one process can access the critical section at
any time.

 Progress is also assured, as a process outside the critical section does not block
other processes from entering the critical section.

 Bounded Waiting is preserved as every process gets a fair chance.

Disadvantages of Peterson’s Solution

 It involves Busy waiting

 It is limited to 2 processes.

TestAndSet

TestAndSet is a hardware solution to the synchronization problem. In TestAndSet, we
have a shared lock variable which can take either of the two values, 0 or 1.

0 Unlock

1 Lock

Before entering into the critical section, a process inquires about the lock. If it is locked, it
keeps on waiting until it becomes free and if it is not locked, it takes the lock and executes
the critical section.

In TestAndSet, Mutual exclusion and progress are preserved but bounded waiting cannot
be preserved.

Question : The enter_CS() and leave_CS() functions to implement critical section of a
process are realized using test-and-set instruction as follows:

int TestAndSet(int &lock) {

 int initial = lock;

 lock = 1;

 return initial;

}

void enter_CS(X)

{

125

 while test-and-set(X) ;

}

void leave_CS(X)

{

 X = 0;

}

In the above solution, X is a memory location associated with the CS and is initialized to
0. Now, consider the following statements:

I. The above solution to CS problem is deadlock-free

II. The solution is starvation free.

III. The processes enter CS in FIFO order.

IV. More than one process can enter CS at the same time.

Which of the above statements is TRUE?

(A) I

(B) II and III

(C) II and IV

(D) IV

Click here for the Solution.

 true

Semaphores

A semaphore is a signaling mechanism and a thread that is waiting on a semaphore can
be signaled by another thread. This is different than a mutex as the mutex can be
signaled only by the thread that called the wait function.

A semaphore uses two atomic operations, wait and signal for process synchronization.
A Semaphore is an integer variable, which can be accessed only through two
operations wait() and signal().

There are two types of semaphores: Binary Semaphores and Counting Semaphores

http://quiz.geeksforgeeks.org/gate-gate-cs-2009-question-33/

126

 Binary Semaphores: They can only be either 0 or 1. They are also known as mutex
locks, as the locks can provide mutual exclusion. All the processes can share the
same mutex semaphore that is initialized to 1. Then, a process has to wait until the
lock becomes 0. Then, the process can make the mutex semaphore 1 and start its
critical section. When it completes its critical section, it can reset the value of
mutex semaphore to 0 and some other process can enter its critical section.

 Counting Semaphores: They can have any value and are not restricted over a
certain domain. They can be used to control access to a resource that has a
limitation on the number of simultaneous accesses. The semaphore can be
initialized to the number of instances of the resource. Whenever a process wants
to use that resource, it checks if the number of remaining instances is more than
zero, i.e., the process has an instance available. Then, the process can enter its
critical section thereby decreasing the value of the counting semaphore by 1. After
the process is over with the use of the instance of the resource, it can leave the
critical section thereby adding 1 to the number of available instances of the
resource.

Sharing of data

All your files on the UNIX file store are private files, that is, unless you particularly

request it, no one has access to your files. If you wish to share a file with someone else,

you must specifically change the protections associated with that file to allow that

person access.

You can copy a file from another user if the file protection has been changed by the

owner to give you read access permission. You will need to include a pathname

(absolute or relative) to the file. For example, to copy the file called data belonging to a

user xyz5 into your current working directory.

Type: cp /disk/a/xyx5/data .

Checking File Protections

To see a long listing of your files showing the file type and the protections currently set

for the three classes of users that UNIX recognises:

Type: ls -l

The first field of the listing is a 10-character field which can be broken into four parts: a

single character and three 3-character fields similar to this:

127

Type: -rwx------

The first character indicates the file type and can be one of the following:

- signifies that this is a normal file

d signifies that this file is a directory

b block device - such as a disk

c character device - such as a terminal

p print spooler

s socket

The next three 3-character fields are associated with the different classes of users that

the UNIX system recognises. The first 3-character field is you, the owner, or user [u], of

the file; the second field is associated with people who are in the same group [g] as you;

and the final field is all other [o] users. NOTE: As far as UNIX is concerned users fall

into only one of the above classes - other users are every user except you and your

group members.

The settings associated with these fields on the example shown above are:

user rwx

group ---

other ---

where rwx indicates the following access permissions:

r read

w write

x execute

Changing Protections On A File

To change the protections on a file, or directory:

Type: chmod permissions filename

or

128

Type: chmod [ugo][+-=]rwx] filename

Where ugo are abbreviations for the following classes:

u user

g group

o other users

and

+ adds a permission to those that may already be set

- removes a permission from those already set

= resets the permission to that specified

For example, suppose you want to share a file called fred with a user that is not in your

group. To change the protection on this file to allow access to the other user:

Type: chmod o+r fred

Here the [o]ther users field has had the [r]ead protection added [+]. After the other user

has finished with your file to remove the access permission:

Type: chmod o-r fred

Several fields can be set in one go:

Type: chmod ug+w test

Here the user and all group members can write to the file called test.

The + and - actions shown above only affect the indicated fields, i.e. read permission is

added and removed. If other permissions are set they are not affected by the + and -

 operations.

A new set of permissions can be set on a file wiping out all previously set values by

using the = operator. To do this:

Type: chmod ugo+r demo

129

This example clears any previously set permissions on the file called demo and sets

read only permission for all classes of users.

Another Use Of chmod

Computer programmers prefer to think in terms of numbers rather than letters and UNIX

programmers are no exception. Consider one of the above classes of users, for

example the group. They can have three types of access to one of your files (read, write

and/or execute) which can either be switched on or off. If the access permission is

switched on then that counts as binary 1; if the access permission is switched off then

that counts as binary 0.

If we applied this to all classes of users then the fields showing a file's permission status

might look like this:

-rwxr--r--

0111100100

where, beside the user, group members and other users also have read permission to

this file.

This type of binary number can be represented in octal format. Again this 10 digit

number is divided into four fields (from the right): three 3-digit fields and a single digit

field. Consider one of these 3-digit fields and the various protections/permissions that

can be set and their associated binary numbers:

Permission
Binary

number

Octal

number

r-- 100 4

-w- 010 2

--x 001 1

rw- 110 6

r-x 101 5

-wx 011 3

rwx 111 7

130

For each of the 3-digit fields we can add up the binary numbers as shown above and we

end up with an octal number which represents the required protection on the file. For

example

Type: chmod 744 fileabc

This command would set read, write, execute [rwx] permission for the user and read

permission for the group and other users on the file called fileabc .

The umask Command

The umask command controls the type of protection that a UNIX file, or directory, is

given when it is created.

By default, all UNIX files, except directories and executable binary programs, are

created with the file protection 666 (see above) which gives read and write permission

to every user. The exceptions are created with file permission 777 which also gives

execute permission to everyone. The umask command defines which of these

permission bits are not to be set when a file is created.

To see the current setting for umask:

Type: umask

Response: 007

To alter this value:

Type: umask new_value

For example:

Type: umask 022

Any file created after this command is issued has the protection code 644 set.

By default, UNIX creates a new directory with protection code 777 set, i.e. everyone has

read, write and execute permission to your account. The umask command also controls

the protections given to a directory when it is created.

131

The default value of umask on the irix system is 077 . Files and directories will have this

value masked from their default values (666 and 777, respectively) when they are

created. This gives your files protection code of 600, so that all files created by you can,

by default, only be accessed by you and gives directories a protection code of 700,

allowing only you the right to have access to your information.

Userid

login is used when signing onto a system. It can also be used to switch from one user

to another at any time (most modern shells have support for this feature built into them,

however).

If an argument is not given, login prompts for the username.

If the user is not root, and if /etc/nologin exists, the contents of this file are printed to
the screen, and the login is terminated. This is typically used to prevent logins when
the system is being taken down.

If special access restrictions are specified for the user in /etc/usertty, these must be
met, or the log in attempt will be denied and a syslog message will be generated. See
the section on "Special Access Restrictions".

If the user is root, then the login must be occurring on a tty listed in /etc/securetty.
Failures will be logged with the syslog facility.

After these conditions have been checked, the password will be requested and
checked (if a password is required for this username). Ten attempts are allowed
before login dies, but after the first three, the response starts to get very slow. Login
failures are reported via the syslog facility. This facility is also used to report any
successful root logins.

If the file .hushlogin exists, then a "quiet" login is performed (this disables the checking
of mail and the printing of the last login time and message of the day). Otherwise,
if /var/log/lastlog exists, the last login time is printed (and the current login is recorded).

Random administrative things, such as setting the UID and GID of the tty are
performed. The TERM environment variable is preserved, if it exists (other environment
variables are preserved if the -p option is used). Then the HOME, PATH, SHELL,
TERM, MAIL, and LOGNAME environment variables are set. PATH defaults
to /usr/local/bin:/bin:/usr/bin for normal users, and
to /usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin for root. Last, if this is not a
"quiet" login, the message of the day is printed and the file with the user‘s name
in /var/spool/mail will be checked, and a message printed if it has non-zero length.

The user‘s shell is then started. If no shell is specified for the user in /etc/passwd,
then /bin/sh is used. If there is no directory specified in /etc/passwd, then / is used (the
home directory is checked for the .hushlogin file described above).

132

OPTIONS

Tag Description

-p Used by getty(8) to tell login not to destroy the environment

-f Used to skip a second login authentication. This specifically

does not work for root, and does not appear to work well

under Linux.

-h Used by other servers (i.e., telnetd(8)) to pass the name of

the remote host to login so that it may be placed in utmp and

wtmp. Only the superuser may use this option.

SPECIAL ACCESS RESTRICTIONS

The file /etc/securetty lists the names of the ttys where root is allowed to log in. One

name of a tty device without the /dev/ prefix must be specified on each line. If the file

does not exist, root is allowed to log in on any tty.

On most modern Linux systems PAM (Pluggable Authentication Modules) is used. On
systems that do not use PAM, the file /etc/usertty specifies additional access
restrictions for specific users. If this file does not exist, no additional access restrictions
are imposed. The file consists of a sequence of sections. There are three possible
section types: CLASSES, GROUPS and USERS. A CLASSES section defines classes
of ttys and hostname patterns, A GROUPS section defines allowed ttys and hosts on a
per group basis, and a USERS section defines allowed ttys and hosts on a per user
basis.

Each line in this file in may be no longer than 255 characters. Comments start with #
character and extend to the end of the line.

The CLASSES Section

A CLASSES section begins with the word CLASSES at the start of a line in all upper

case. Each following line until the start of a new section or the end of the file consists of

a sequence of words separated by tabs or spaces. Each line defines a class of ttys and

host patterns.

133

The word at the beginning of a line becomes defined as a collective name for the ttys
and host patterns specified at the rest of the line. This collective name can be used in
any subsequent GROUPS or USERS section. No such class name must occur as part
of the definition of a class in order to avoid problems with recursive classes.

An example CLASSES section:

CLASSES
myclass1 tty1 tty2
myclass2 tty3 @.foo.com

This defines the classes myclass1 and myclass2 as the corresponding right hand
sides.

The GROUPS Section

A GROUPS section defines allowed ttys and hosts on a per Unix group basis. If a user

is a member of a Unix group according to /etc/passwd and /etc/group and such a group

is mentioned in a GROUPS section in /etc/usertty then the user is granted access if the

group is.

A GROUPS section starts with the word GROUPS in all upper case at the start of a
line, and each following line is a sequence of words separated by spaces or tabs. The
first word on a line is the name of the group and the rest of the words on the line
specifies the ttys and hosts where members of that group are allowed access. These
specifications may involve the use of classes defined in previous CLASSES sections.

An example GROUPS section.

GROUPS
sys tty1 @.bar.edu
stud myclass1 tty4

This example specifies that members of group sys may log in on tty1 and from hosts in
the bar.edu domain. Users in group stud may log in from hosts/ttys specified in the
class myclass1 or from tty4.

The USERS Section

A USERS section starts with the word USERS in all upper case at the start of a line,

and each following line is a sequence of words separated by spaces or tabs. The first

word on a line is a username and that user is allowed to log in on the ttys and from the

hosts mentioned on the rest of the line. These specifications may involve classes

134

defined in previous CLASSES sections. If no section header is specified at the top of

the file, the first section defaults to be a USERS section.

An example USERS section:

USERS
zacho tty1 @130.225.16.0/255.255.255.0
blue tty3 myclass2

This lets the user zacho login only on tty1 and from hosts with IP addreses in the range
130.225.16.0 - 130.225.16.255, and user blue is allowed to log in from tty3 and
whatever is specified in the class myclass2.

There may be a line in a USERS section starting with a username of *. This is a default
rule and it will be applied to any user not matching any other line.

If both a USERS line and GROUPS line match a user then the user is allowed access
from the union of all the ttys/hosts mentioned in these specifications.

Origins

The tty and host pattern specifications used in the specification of classes, group and

user access are called origins. An origin string may have one of these formats:

Tag Description

o The name of a tty device without the /dev/ prefix, for example

tty1 or ttyS0.

o The string @localhost, meaning that the user is allowed to

telnet/rlogin from the local host to the same host. This also

allows the user to for example run the command: xterm -e

/bin/login.

o A domain name suffix such as @.some.dom, meaning that

the user may rlogin/telnet from any host whose domain name

has the suffix .some.dom.

o A range of IPv4 addresses, written @x.x.x.x/y.y.y.y where

x.x.x.x is the IP address in the usual dotted quad decimal

notation, and y.y.y.y is a bitmask in the same notation

135

specifying which bits in the address to compare with the IP

address of the remote host. For example

@130.225.16.0/255.255.254.0 means that the user may

rlogin/telnet from any host whose IP address is in the range

130.225.16.0 - 130.225.17.255.

Any of the above origins may be prefixed by a time specification according to the

syntax:

timespec ::= ‘[‘ <day-or-hour> [‘:‘ <day-or-hour>]* ‘]‘
day ::= ‘mon‘ | ‘tue‘ | ‘wed‘ | ‘thu‘ | ‘fri‘ | ‘sat‘ | ‘sun‘
hour ::= ‘0‘ | ‘1‘ | ... | ‘23‘
hourspec ::= <hour> | <hour> ‘-‘ <hour>
day-or-hour ::= <day> | <hourspec>

For example, the origin [mon:tue:wed:thu:fri:8-17]tty3 means that log in is allowed on
mondays through fridays between 8:00 and 17:59 (5:59 pm) on tty3. This also shows
that an hour range a-b includes all moments between a:00 and b:59. A single hour
specification (such as 10) means the time span between 10:00 and 10:59.

Not specifying any time prefix for a tty or host means log in from that origin is allowed
any time. If you give a time prefix be sure to specify both a set of days and one or more
hours or hour ranges. A time specification may not include any white space.

If no default rule is given then users not matching any line /etc/usertty are allowed to
log in from anywhere as is standard behavior.

FILES

/var/run/utmp
/var/log/wtmp
/var/log/lastlog
/var/spool/mail/*
/etc/motd
/etc/passwd
/etc/nologin
/etc/usertty
.hushlogin

group-id

In Unix-like systems, multiple users can be put into groups. POSIX and

conventional Unix file system permissions are organized into three classes, user, group,

and others. The use of groups allows additional abilities to be delegated in an organized

fashion, such as access to disks, printers, and other peripherals. This method, among

https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Group_(computing)
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/File_system_permissions
https://en.wikipedia.org/wiki/Computer_printer
https://en.wikipedia.org/wiki/Peripheral

136

others, also enables the superuser to delegate some administrative tasks to normal

users, similar to the Administrators group on Microsoft Windows NT and its derivatives.

A group identifier, often abbreviated to GID, is a numeric value used to represent a

specific group.[1] The range of values for a GID varies amongst different systems; at the

very least, a GID can be between 0 and 32,767, with one restriction: the login group for

the superuser must have GID 0. This numeric value is used to refer to groups in

the /etc/passwd and /etc/group files or their equivalents. Shadow password files

and Network Information Service also refer to numeric GIDs. The group identifier is a

necessary component of Unix file systems and processes.

Supplementary groups

In Unix systems, every user must be a member of at least one group, the primary group,

which is identified by the numeric GID of the user's entry in the passwd database, which

can be viewed with the command getent passwd (usually stored

in /etc/passwd or LDAP). This group is referred to as the primary group ID. A user may

be listed as member of additional groups in the relevant entries in the group database,

which can be viewed with getent group (usually stored in /etc/group or LDAP); the IDs of

these groups are referred to as supplementary group IDs.

Pipes

A series of filter commands can be piped together using the pipe symbol: ‗|‘. When two

commands are piped together, the stdin of the second program is read from the stdout

of the first program. This creates a powerful mechanism for running complex commands

quickly.

Command

sort: this command is used to sort the contents of the file. This command is

also useful to merge the sorted files and store the result in some file. The

contents of the original file remain unaltered.

Common

Syntax:

sort[OPTION]…[FILE]

Example1: sort file1

This command will sort the contents of file1

Example2: sort -o output_file file1 file2

https://en.wikipedia.org/wiki/Superuser
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Group_identifier#cite_note-1
https://en.wikipedia.org/wiki/etc/passwd
https://en.wikipedia.org/wiki/Shadow_passwords
https://en.wikipedia.org/wiki/Network_Information_Service
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/LDAP
https://en.wikipedia.org/wiki/LDAP

137

Command

sort: this command is used to sort the contents of the file. This command is

also useful to merge the sorted files and store the result in some file. The

contents of the original file remain unaltered.

This will sort the contents of file1 and file2 and save the result in output_file

file.

Command

cut – this command is used to cut a given number of characters or columns

from a file. For cutting a certain number of columns it is important to specify

the delimiter. A delimiter specifies how the columns are separated in a text

file e.g. number of spaces, tabs or other special characters.

Common

Syntax:

cut OPTION …[FILE]

Example 1 cut -c 5-10 file1

It will cut 5 to 10 characters from each line of file1

Example 2 cut -d ―,― -f2,6 file1

This will cut 2nd and 6th fields from file1, where the fields are separated by

delimiter ―,‖

This will cut 2nd and 6th fields from file1, where the fields are separated by the

delimiter ―,‖.

Let us now see an Example of using pipes to print out a sorted list of unique words. If

file1 has a list of words in a random order with random repetitions, then the following

piping can be used to achieve this.

$ sort file1 | uniq > file2

Here, the sort command reads input from the file ‗file1‘ and sends the output to stdout.

The pipe symbol causes the output of the sort command to be redirected to the input of

the uniq command. The uniq commands reads the sorted list from its stdin and prints

the unique words from there to its stdout.

Finally, the output redirection symbol ‗>‘ redirects the stdout of the uniq command to the

file ‗file2‘.

138

Fifos

It's hard to write a bash script of much import without using a pipe or two. Named pipes,
on the other hand, are much rarer.

Like un-named/anonymous pipes, named pipes provide a form of IPC (Inter-Process
Communication). With anonymous pipes, there's one reader and one writer, but that's
not required with named pipes—any number of readers and writers may use the pipe.

Named pipes are visible in the filesystem and can be read and written just as other files
are:

$ ls -la /tmp/testpipe

prw-r--r-- 1 mitch users 0 2009-03-25 12:06 /tmp/testpipe|

Why might you want to use a named pipe in a shell script? One situation might be when
you've got a backup script that runs via cron, and after it's finished, you want to shut
down your system. If you do the shutdown from the backup script, cron never sees the
backup script finish, so it never sends out the e-mail containing the output from the
backup job. You could do the shutdown via another cron job after the backup is
"supposed" to finish, but then you run the risk of shutting down too early every now and
then, or you have to make the delay much larger than it needs to be most of the time.

Using a named pipe, you can start the backup and the shutdown cron jobs at the same
time and have the shutdown just wait till the backup writes to the named pipe. When the
shutdown job reads something from the pipe, it then pauses for a few minutes so the
cron e-mail can go out, and then it shuts down the system.

Of course, the previous example probably could be done fairly reliably by simply
creating a regular file to signal when the backup has completed. A more complex
example might be if you have a backup that wakes up every hour or so and reads a
named pipe to see if it should run. You then could write something to the pipe each time
you've made a lot of changes to the files you want to back up. You might even write the
names of the files that you want backed up to the pipe so the backup doesn't have to
check everything.

Named pipes are created via mkfifo or mknod:

$ mkfifo /tmp/testpipe

$ mknod /tmp/testpipe p

The following shell script reads from a pipe. It first creates the pipe if it doesn't exist,
then it reads in a loop till it sees "quit":

#!/bin/bash

139

pipe=/tmp/testpipe

trap "rm -f $pipe" EXIT

if [[! -p $pipe]]; then

 mkfifo $pipe

fi

while true

do

 if read line <$pipe; then

 if [["$line" == 'quit']]; then

 break

 fi

 echo $line

 fi

done

echo "Reader exiting"

The following shell script writes to the pipe created by the read script. First, it checks to
make sure the pipe exists, then it writes to the pipe. If an argument is given to the script,
it writes it to the pipe; otherwise, it writes "Hello from PID".

#!/bin/bash

140

pipe=/tmp/testpipe

if [[! -p $pipe]]; then

 echo "Reader not running"

 exit 1

fi

if [["$1"]]; then

 echo "$1" >$pipe

else

 echo "Hello from $$" >$pipe

fi

Running the scripts produces:

$ sh rpipe.sh &

[3] 23842

$ sh wpipe.sh

Hello from 23846

$ sh wpipe.sh

Hello from 23847

$ sh wpipe.sh

Hello from 23848

$ sh wpipe.sh quit

Reader exiting

141

Note: initially I had the read command in the read script directly in the while loop of the
read script, but the read command would usually return a non-zero status after two or
three reads causing the loop to terminate.

while read line <$pipe

do

 if [["$line" == 'quit']]; then

 break

 fi

 echo $line

done

message queues

Why do we need message queues when we already have the shared memory? It
would be for multiple reasons, let us try to break this into multiple points for
simplification −

 As understood, once the message is received by a process it would be no longer
available for any other process. Whereas in shared memory, the data is
available for multiple processes to access.

 If we want to communicate with small message formats.

 Shared memory data need to be protected with synchronization when multiple
processes communicating at the same time.

 Frequency of writing and reading using the shared memory is high, then it would
be very complex to implement the functionality. Not worth with regard to
utilization in this kind of cases.

 What if all the processes do not need to access the shared memory but very few
processes only need it, it would be better to implement with message queues.

 If we want to communicate with different data packets, say process A is sending
message type 1 to process B, message type 10 to process C, and message
type 20 to process D. In this case, it is simplier to implement with message
queues. To simplify the given message type as 1, 10, 20, it can be either 0 or
+ve or –ve as discussed below.

 Ofcourse, the order of message queue is FIFO (First In First Out). The first
message inserted in the queue is the first one to be retrieved.

142

Using Shared Memory or Message Queues depends on the need of the application
and how effectively it can be utilized.

Communication using message queues can happen in the following ways −

 Writing into the shared memory by one process and reading from the shared
memory by another process. As we are aware, reading can be done with
multiple processes as well.

 Writing into the shared memory by one process with different data packets and
reading from it by multiple processes, i.e., as per message type.

143

Having seen certain information on message queues, now it is time to check for the
system call (System V) which supports the message queues.

To perform communication using message queues, following are the steps −

Step 1 − Create a message queue or connect to an already existing message queue
(msgget())

Step 2 − Write into message queue (msgsnd())

Step 3 − Read from the message queue (msgrcv())

Step 4 − Perform control operations on the message queue (msgctl())

Now, let us check the syntax and certain information on the above calls.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget(key_t key, int msgflg)

This system call creates or allocates a System V message queue. Following
arguments need to be passed −

 The first argument, key, recognizes the message queue. The key can be either
an arbitrary value or one that can be derived from the library function ftok().

 The second argument, shmflg, specifies the required message queue flag/s such
as IPC_CREAT (creating message queue if not exists) or IPC_EXCL (Used with
IPC_CREAT to create the message queue and the call fails, if the message
queue already exists). Need to pass the permissions as well.

Note − Refer earlier sections for details on permissions.

This call would return a valid message queue identifier (used for further calls of
message queue) on success and -1 in case of failure. To know the cause of failure,
check with errno variable or perror() function.

Various errors with respect to this call are EACCESS (permission denied), EEXIST
(queue already exists can‘t create), ENOENT (queue doesn‘t exist), ENOMEM (not
enough memory to create the queue), etc.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msgid, const void *msgp, size_t msgsz, int msgflg)

This system call sends/appends a message into the message queue (System V).
Following arguments need to be passed −

144

 The first argument, msgid, recognizes the message queue i.e., message queue
identifier. The identifier value is received upon the success of msgget()

 The second argument, msgp, is the pointer to the message, sent to the caller,
defined in the structure of the following form −

struct msgbuf {
 long mtype;
 char mtext[1];
};

The variable mtype is used for communicating with different message types, explained
in detail in msgrcv() call. The variable mtext is an array or other structure whose size is
specified by msgsz (positive value). If the mtext field is not mentioned, then it is
considered as zero size message, which is permitted.

 The third argument, msgsz, is the size of message (the message should end
with a null character)

 The fourth argument, msgflg, indicates certain flags such as IPC_NOWAIT
(returns immediately when no message is found in queue or MSG_NOERROR
(truncates message text, if more than msgsz bytes)

This call would return 0 on success and -1 in case of failure. To know the cause of
failure, check with errno variable or perror() function.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgrcv(int msgid, const void *msgp, size_t msgsz, long msgtype, int msgflg)

This system call retrieves the message from the message queue (System V). Following
arguments need to be passed −

 The first argument, msgid, recognizes the message queue i.e., the message
queue identifier. The identifier value is received upon the success of msgget()

 The second argument, msgp, is the pointer of the message received from the
caller. It is defined in the structure of the following form −

struct msgbuf {
 long mtype;
 char mtext[1];
};

The variable mtype is used for communicating with different message types. The
variable mtext is an array or other structure whose size is specified by msgsz (positive
value). If the mtext field is not mentioned, then it is considered as zero size message,
which is permitted.

145

 The third argument, msgsz, is the size of the message received (message
should end with a null character)

 The fouth argument, msgtype, indicates the type of message −

o If msgtype is 0 − Reads the first received message in the queue

o If msgtype is +ve − Reads the first message in the queue of type
msgtype (if msgtype is 10, then reads only the first message of type 10
even though other types may be in the queue at the beginning)

o If msgtype is –ve − Reads the first message of lowest type less than or
equal to the absolute value of message type (say, if msgtype is -5, then it
reads first message of type less than 5 i.e., message type from 1 to 5)

 The fifth argument, msgflg, indicates certain flags such as IPC_NOWAIT (returns
immediately when no message is found in the queue or MSG_NOERROR
(truncates the message text if more than msgsz bytes)

This call would return the number of bytes actually received in mtext array on success
and -1 in case of failure. To know the cause of failure, check with errno variable or
perror() function.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(int msgid, int cmd, struct msqid_ds *buf)

This system call performs control operations of the message queue (System V).
Following arguments need to be passed −

 The first argument, msgid, recognizes the message queue i.e., the message
queue identifier. The identifier value is received upon the success of msgget()

 The second argument, cmd, is the command to perform the required control
operation on the message queue. Valid values for cmd are −

IPC_STAT − Copies information of the current values of each member of struct
msqid_ds to the passed structure pointed by buf. This command requires read
permission on the message queue.

IPC_SET − Sets the user ID, group ID of the owner, permissions etc pointed to by
structure buf.

IPC_RMID − Removes the message queue immediately.

IPC_INFO − Returns information about the message queue limits and parameters in
the structure pointed by buf, which is of type struct msginfo

MSG_INFO − Returns an msginfo structure containing information about the
consumed system resources by the message queue.

146

 The third argument, buf, is a pointer to the message queue structure named
struct msqid_ds. The values of this structure would be used for either set or get
as per cmd.

This call would return the value depending on the passed command. Success of
IPC_INFO and MSG_INFO or MSG_STAT returns the index or identifier of the
message queue or 0 for other operations and -1 in case of failure. To know the cause
of failure, check with errno variable or perror() function.

Having seen the basic information and system calls with regard to message queues,
now it is time to check with a program.

Let us see the description before looking at the program −

Step 1 − Create two processes, one is for sending into message queue (msgq_send.c)
and another is for retrieving from the message queue (msgq_recv.c)

Step 2 − Creating the key, using ftok() function. For this, initially file msgq.txt is created
to get a unique key.

Step 3 − The sending process performs the following.

 Reads the string input from the user

 Removes the new line, if it exists

 Sends into message queue

 Repeats the process until the end of input (CTRL + D)

 Once the end of input is received, sends the message ―end‖ to signify the end of
the process

Step 4 − In the receiving process, performs the following.

 Reads the message from the queue

 Displays the output

 If the received message is ―end‖, finishes the process and exits

To simplify, we are not using the message type for this sample. Also, one process is
writing into the queue and another process is reading from the queue. This can be
extended as needed i.e., ideally one process would write into the queue and multiple
processes read from the queue.

Now, let us check the process (message sending into queue) – File: msgq_send.c

/* Filename: msgq_send.c */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>

147

#include <sys/ipc.h>
#include <sys/msg.h>

#define PERMS 0644
struct my_msgbuf {
 long mtype;
 char mtext[200];
};

int main(void) {
 struct my_msgbuf buf;
 int msqid;
 int len;
 key_t key;
 system("touch msgq.txt");

 if ((key = ftok("msgq.txt", 'B')) == -1) {
 perror("ftok");
 exit(1);
 }

 if ((msqid = msgget(key, PERMS | IPC_CREAT)) == -1) {
 perror("msgget");
 exit(1);
 }
 printf("message queue: ready to send messages.\n");
 printf("Enter lines of text, ^D to quit:\n");
 buf.mtype = 1; /* we don't really care in this case */

 while(fgets(buf.mtext, sizeof buf.mtext, stdin) != NULL) {
 len = strlen(buf.mtext);
 /* remove newline at end, if it exists */
 if (buf.mtext[len-1] == '\n') buf.mtext[len-1] = '\0';
 if (msgsnd(msqid, &buf, len+1, 0) == -1) /* +1 for '\0' */
 perror("msgsnd");
 }
 strcpy(buf.mtext, "end");
 len = strlen(buf.mtext);
 if (msgsnd(msqid, &buf, len+1, 0) == -1) /* +1 for '\0' */
 perror("msgsnd");

 if (msgctl(msqid, IPC_RMID, NULL) == -1) {
 perror("msgctl");
 exit(1);
 }
 printf("message queue: done sending messages.\n");

148

 return 0;
}

Compilation and Execution Steps

message queue: ready to send messages.
Enter lines of text, ^D to quit:
this is line 1
this is line 2
message queue: done sending messages.

Following is the code from message receiving process (retrieving message from
queue) – File: msgq_recv.c

/* Filename: msgq_recv.c */
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define PERMS 0644
struct my_msgbuf {
 long mtype;
 char mtext[200];
};

int main(void) {
 struct my_msgbuf buf;
 int msqid;
 int toend;
 key_t key;

 if ((key = ftok("msgq.txt", 'B')) == -1) {
 perror("ftok");
 exit(1);
 }

 if ((msqid = msgget(key, PERMS)) == -1) { /* connect to the queue */
 perror("msgget");
 exit(1);
 }
 printf("message queue: ready to receive messages.\n");

 for(;;) { /* normally receiving never ends but just to make conclusion
 /* this program ends wuth string of end */

149

 if (msgrcv(msqid, &buf, sizeof(buf.mtext), 0, 0) == -1) {
 perror("msgrcv");
 exit(1);
 }
 printf("recvd: \"%s\"\n", buf.mtext);
 toend = strcmp(buf.mtext,"end");
 if (toend == 0)
 break;
 }
 printf("message queue: done receiving messages.\n");
 system("rm msgq.txt");
 return 0;
}

Compilation and Execution Steps

message queue: ready to receive messages.
recvd: "this is line 1"
recvd: "this is line 2"
recvd: "end"
message queue: done receiving messages.

Semaphores

The first question that comes to mind is, why do we need semaphores? A simple
answer, to protect the critical/common region shared among multiple processes.

Let us assume, multiple processes are using the same region of code and if all want to
access parallelly then the outcome is overlapped. Say, for example, multiple users are
using one printer only (common/critical section), say 3 users, given 3 jobs at same
time, if all the jobs start parallelly, then one user output is overlapped with another. So,
we need to protect that using semaphores i.e., locking the critical section when one
process is running and unlocking when it is done. This would be repeated for each
user/process so that one job is not overlapped with another job.

Basically semaphores are classified into two types −

Binary Semaphores − Only two states 0 & 1, i.e., locked/unlocked or
available/unavailable, Mutex implementation.

Counting Semaphores − Semaphores which allow arbitrary resource count are called
counting semaphores.

Assume that we have 5 printers (to understand assume that 1 printer only accepts 1
job) and we got 3 jobs to print. Now 3 jobs would be given for 3 printers (1 each). Again
4 jobs came while this is in progress. Now, out of 2 printers available, 2 jobs have been

150

scheduled and we are left with 2 more jobs, which would be completed only after one
of the resource/printer is available. This kind of scheduling as per resource availability
can be viewed as counting semaphores.

To perform synchronization using semaphores, following are the steps −

Step 1 − Create a semaphore or connect to an already existing semaphore (semget())

Step 2 − Perform operations on the semaphore i.e., allocate or release or wait for the
resources (semop())

Step 3 − Perform control operations on the message queue (semctl())

Now, let us check this with the system calls we have.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg)

This system call creates or allocates a System V semaphore set. The following
arguments need to be passed −

 The first argument, key, recognizes the message queue. The key can be either
an arbitrary value or one that can be derived from the library function ftok().

 The second argument, nsems, specifies the number of semaphores. If binary
then it is 1, implies need of 1 semaphore set, otherwise as per the required
count of number of semaphore sets.

 The third argument, semflg, specifies the required semaphore flag/s such as
IPC_CREAT (creating semaphore if it does not exist) or IPC_EXCL (used with
IPC_CREAT to create semaphore and the call fails, if a semaphore already
exists). Need to pass the permissions as well.

Note − Refer earlier sections for details on permissions.

This call would return valid semaphore identifier (used for further calls of semaphores)
on success and -1 in case of failure. To know the cause of failure, check with errno
variable or perror() function.

Various errors with respect to this call are EACCESS (permission denied), EEXIST
(queue already exists can‘t create), ENOENT (queue doesn‘t exist), ENOMEM (not
enough memory to create the queue), ENOSPC (maximum sets limit exceeded), etc.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop(int semid, struct sembuf *semops, size_t nsemops)

151

This system call performs the operations on the System V semaphore sets viz.,
allocating resources, waiting for the resources or freeing the resources. Following
arguments need to be passed −

 The first argument, semid, indicates semaphore set identifier created by
semget().

 The second argument, semops, is the pointer to an array of operations to be
performed on the semaphore set. The structure is as follows −

struct sembuf {
 unsigned short sem_num; /* Semaphore set num */
 short sem_op; /* Semaphore operation */
 short sem_flg; /* Operation flags, IPC_NOWAIT, SEM_UNDO */
};

Element, sem_op, in the above structure, indicates the operation that needs to be
performed −

 If sem_op is –ve, allocate or obtain resources. Blocks the calling process until
enough resources have been freed by other processes, so that this process can
allocate.

 If sem_op is zero, the calling process waits or sleeps until semaphore value
reaches 0.

 If sem_op is +ve, release resources.

For example −

struct sembuf sem_lock = { 0, -1, SEM_UNDO };

struct sembuf sem_unlock = {0, 1, SEM_UNDO };

 The third argument, nsemops, is the number of operations in that array.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, …)

This system call performs control operation for a System V semaphore. The following
arguments need to be passed −

 The first argument, semid, is the identifier of the semaphore. This id is the
semaphore identifier, which is the return value of semget() system call.

 The second argument, semnum, is the number of semaphore. The semaphores
are numbered from 0.

 The third argument, cmd, is the command to perform the required control
operation on the semaphore.

152

 The fourth argument, of type, union semun, depends on the cmd. For few cases,
the fourth argument is not applicable.

Let us check the union semun −

union semun {
 int val; /* val for SETVAL */
 struct semid_ds *buf; /* Buffer for IPC_STAT and IPC_SET */
 unsigned short *array; /* Buffer for GETALL and SETALL */
 struct seminfo *__buf; /* Buffer for IPC_INFO and SEM_INFO*/
};

The semid_ds data structure which is defined in sys/sem.h is as follows −

struct semid_ds {
 struct ipc_perm sem_perm; /* Permissions */
 time_t sem_otime; /* Last semop time */
 time_t sem_ctime; /* Last change time */
 unsigned long sem_nsems; /* Number of semaphores in the set */
};

Note − Please refer manual pages for other data structures.

union semun arg; Valid values for cmd are −

 IPC_STAT − Copies the information of the current values of each member of
struct semid_ds to the passed structure pointed by arg.buf. This command
requires read permission to the semaphore.

 IPC_SET − Sets the user ID, group ID of the owner, permissions, etc. pointed to
by the structure semid_ds.

 IPC_RMID − Removes the semaphores set.

 IPC_INFO − Returns the information about the semaphore limits and parameters
in the structure semid_ds pointed by arg.__buf.

 SEM_INFO − Returns a seminfo structure containing information about the
consumed system resources by the semaphore.

This call would return value (non-negative value) depending upon the passed
command. Upon success, IPC_INFO and SEM_INFO or SEM_STAT returns the index
or identifier of the highest used entry as per Semaphore or the value of semncnt for
GETNCNT or the value of sempid for GETPID or the value of semval for GETVAL 0 for
other operations on success and -1 in case of failure. To know the cause of failure,
check with errno variable or perror() function.

Before looking at the code, let us understand its implementation −

 Create two processes say, child and parent.

 Create shared memory mainly needed to store the counter and other flags to
indicate end of read/write process into the shared memory.

153

 The counter is incremented by count by both parent and child processes. The
count is either passed as a command line argument or taken as default (if not
passed as command line argument or the value is less than 10000). Called with
certain sleep time to ensure both parent and child accesses the shared memory
at the same time i.e., in parallel.

 Since, the counter is incremented in steps of 1 by both parent and child, the final
value should be double the counter. Since, both parent and child processes
performing the operations at same time, the counter is not incremented as
required. Hence, we need to ensure the completeness of one process
completion followed by other process.

 All the above implementations are performed in the file shm_write_cntr.c

 Check if the counter value is implemented in file shm_read_cntr.c

 To ensure completion, the semaphore program is implemented in file
shm_write_cntr_with_sem.c. Remove the semaphore after completion of the
entire process (after read is done from other program)

 Since, we have separate files to read the value of counter in the shared memory
and don‘t have any effect from writing, the reading program remains the same
(shm_read_cntr.c)

 It is always better to execute the writing program in one terminal and reading
program from another terminal. Since, the program completes execution only
after the writing and reading process is complete, it is ok to run the program
after completely executing the write program. The write program would wait until
the read program is run and only finishes after it is done.

Programs without semaphores.

/* Filename: shm_write_cntr.c */
#include<stdio.h>
#include<sys/ipc.h>
#include<sys/shm.h>
#include<sys/types.h>
#include<string.h>
#include<errno.h>
#include<stdlib.h>
#include<unistd.h>
#include<string.h>

#define SHM_KEY 0x12345
struct shmseg {
 int cntr;
 int write_complete;
 int read_complete;
};
void shared_memory_cntr_increment(int pid, struct shmseg *shmp, int total_count);

154

int main(int argc, char *argv[]) {
 int shmid;
 struct shmseg *shmp;
 char *bufptr;
 int total_count;
 int sleep_time;
 pid_t pid;
 if (argc != 2)
 total_count = 10000;
 else {
 total_count = atoi(argv[1]);
 if (total_count < 10000)
 total_count = 10000;
 }
 printf("Total Count is %d\n", total_count);
 shmid = shmget(SHM_KEY, sizeof(struct shmseg), 0644|IPC_CREAT);

 if (shmid == -1) {
 perror("Shared memory");
 return 1;
 }

 // Attach to the segment to get a pointer to it.
 shmp = shmat(shmid, NULL, 0);
 if (shmp == (void *) -1) {
 perror("Shared memory attach");
 return 1;
 }
 shmp->cntr = 0;
 pid = fork();

 /* Parent Process - Writing Once */
 if (pid > 0) {
 shared_memory_cntr_increment(pid, shmp, total_count);
 } else if (pid == 0) {
 shared_memory_cntr_increment(pid, shmp, total_count);
 return 0;
 } else {
 perror("Fork Failure\n");
 return 1;
 }
 while (shmp->read_complete != 1)
 sleep(1);

 if (shmdt(shmp) == -1) {

155

 perror("shmdt");
 return 1;
 }

 if (shmctl(shmid, IPC_RMID, 0) == -1) {
 perror("shmctl");
 return 1;
 }
 printf("Writing Process: Complete\n");
 return 0;
}

/* Increment the counter of shared memory by total_count in steps of 1 */
void shared_memory_cntr_increment(int pid, struct shmseg *shmp, int total_count) {
 int cntr;
 int numtimes;
 int sleep_time;
 cntr = shmp->cntr;
 shmp->write_complete = 0;
 if (pid == 0)
 printf("SHM_WRITE: CHILD: Now writing\n");
 else if (pid > 0)
 printf("SHM_WRITE: PARENT: Now writing\n");
 //printf("SHM_CNTR is %d\n", shmp->cntr);

 /* Increment the counter in shared memory by total_count in steps of 1 */
 for (numtimes = 0; numtimes < total_count; numtimes++) {
 cntr += 1;
 shmp->cntr = cntr;

 /* Sleeping for a second for every thousand */
 sleep_time = cntr % 1000;
 if (sleep_time == 0)
 sleep(1);
 }

 shmp->write_complete = 1;
 if (pid == 0)
 printf("SHM_WRITE: CHILD: Writing Done\n");
 else if (pid > 0)
 printf("SHM_WRITE: PARENT: Writing Done\n");
 return;
}

156

Compilation and Execution Steps

Total Count is 10000
SHM_WRITE: PARENT: Now writing
SHM_WRITE: CHILD: Now writing
SHM_WRITE: PARENT: Writing Done
SHM_WRITE: CHILD: Writing Done
Writing Process: Complete

Now, let us check the shared memory reading program.

/* Filename: shm_read_cntr.c */
#include<stdio.h>
#include<sys/ipc.h>
#include<sys/shm.h>
#include<sys/types.h>
#include<string.h>
#include<errno.h>
#include<stdlib.h>
#include<unistd.h>

#define SHM_KEY 0x12345
struct shmseg {
 int cntr;
 int write_complete;
 int read_complete;
};

int main(int argc, char *argv[]) {
 int shmid, numtimes;
 struct shmseg *shmp;
 int total_count;
 int cntr;
 int sleep_time;
 if (argc != 2)
 total_count = 10000;

 else {
 total_count = atoi(argv[1]);
 if (total_count < 10000)
 total_count = 10000;
 }
 shmid = shmget(SHM_KEY, sizeof(struct shmseg), 0644|IPC_CREAT);

 if (shmid == -1) {
 perror("Shared memory");
 return 1;

157

 }
 // Attach to the segment to get a pointer to it.
 shmp = shmat(shmid, NULL, 0);

 if (shmp == (void *) -1) {
 perror("Shared memory attach");
 return 1;
 }

 /* Read the shared memory cntr and print it on standard output */
 while (shmp->write_complete != 1) {
 if (shmp->cntr == -1) {
 perror("read");
 return 1;
 }
 sleep(3);
 }
 printf("Reading Process: Shared Memory: Counter is %d\n", shmp->cntr);
 printf("Reading Process: Reading Done, Detaching Shared Memory\n");
 shmp->read_complete = 1;

 if (shmdt(shmp) == -1) {
 perror("shmdt");
 return 1;
 }
 printf("Reading Process: Complete\n");
 return 0;
}

Compilation and Execution Steps

Reading Process: Shared Memory: Counter is 11000
Reading Process: Reading Done, Detaching Shared Memory
Reading Process: Complete

If you observe the above output, the counter should be 20000, however, since before
completion of one process task other process is also processing in parallel, the counter
value is not as expected. The output would vary from system to system and also it
would vary with each execution. To ensure the two processes perform the task after
completion of one task, it should be implemented using synchronization mechanisms.

Now, let us check the same application using semaphores.

Note − Reading program remains the same.

/* Filename: shm_write_cntr_with_sem.c */
#include<stdio.h>
#include<sys/types.h>

158

#include<sys/ipc.h>
#include<sys/shm.h>
#include<sys/sem.h>
#include<string.h>
#include<errno.h>
#include<stdlib.h>
#include<unistd.h>
#include<string.h>

#define SHM_KEY 0x12345
#define SEM_KEY 0x54321
#define MAX_TRIES 20

struct shmseg {
 int cntr;
 int write_complete;
 int read_complete;
};
void shared_memory_cntr_increment(int, struct shmseg*, int);
void remove_semaphore();

int main(int argc, char *argv[]) {
 int shmid;
 struct shmseg *shmp;
 char *bufptr;
 int total_count;
 int sleep_time;
 pid_t pid;
 if (argc != 2)
 total_count = 10000;
 else {
 total_count = atoi(argv[1]);
 if (total_count < 10000)
 total_count = 10000;
 }
 printf("Total Count is %d\n", total_count);
 shmid = shmget(SHM_KEY, sizeof(struct shmseg), 0644|IPC_CREAT);

 if (shmid == -1) {
 perror("Shared memory");
 return 1;
 }
 // Attach to the segment to get a pointer to it.
 shmp = shmat(shmid, NULL, 0);

 if (shmp == (void *) -1) {

159

 perror("Shared memory attach: ");
 return 1;
 }
 shmp->cntr = 0;
 pid = fork();

 /* Parent Process - Writing Once */
 if (pid > 0) {
 shared_memory_cntr_increment(pid, shmp, total_count);
 } else if (pid == 0) {
 shared_memory_cntr_increment(pid, shmp, total_count);
 return 0;
 } else {
 perror("Fork Failure\n");
 return 1;
 }
 while (shmp->read_complete != 1)
 sleep(1);

 if (shmdt(shmp) == -1) {
 perror("shmdt");
 return 1;
 }

 if (shmctl(shmid, IPC_RMID, 0) == -1) {
 perror("shmctl");
 return 1;
 }
 printf("Writing Process: Complete\n");
 remove_semaphore();
 return 0;
}

/* Increment the counter of shared memory by total_count in steps of 1 */
void shared_memory_cntr_increment(int pid, struct shmseg *shmp, int total_count) {
 int cntr;
 int numtimes;
 int sleep_time;
 int semid;
 struct sembuf sem_buf;
 struct semid_ds buf;
 int tries;
 int retval;
 semid = semget(SEM_KEY, 1, IPC_CREAT | IPC_EXCL | 0666);
 //printf("errno is %d and semid is %d\n", errno, semid);

160

 /* Got the semaphore */
 if (semid >= 0) {
 printf("First Process\n");
 sem_buf.sem_op = 1;
 sem_buf.sem_flg = 0;
 sem_buf.sem_num = 0;
 retval = semop(semid, &sem_buf, 1);
 if (retval == -1) {
 perror("Semaphore Operation: ");
 return;
 }
 } else if (errno == EEXIST) { // Already other process got it
 int ready = 0;
 printf("Second Process\n");
 semid = semget(SEM_KEY, 1, 0);
 if (semid < 0) {
 perror("Semaphore GET: ");
 return;
 }

 /* Waiting for the resource */
 sem_buf.sem_num = 0;
 sem_buf.sem_op = 0;
 sem_buf.sem_flg = SEM_UNDO;
 retval = semop(semid, &sem_buf, 1);
 if (retval == -1) {
 perror("Semaphore Locked: ");
 return;
 }
 }
 sem_buf.sem_num = 0;
 sem_buf.sem_op = -1; /* Allocating the resources */
 sem_buf.sem_flg = SEM_UNDO;
 retval = semop(semid, &sem_buf, 1);

 if (retval == -1) {
 perror("Semaphore Locked: ");
 return;
 }
 cntr = shmp->cntr;
 shmp->write_complete = 0;
 if (pid == 0)
 printf("SHM_WRITE: CHILD: Now writing\n");
 else if (pid > 0)
 printf("SHM_WRITE: PARENT: Now writing\n");
 //printf("SHM_CNTR is %d\n", shmp->cntr);

161

 /* Increment the counter in shared memory by total_count in steps of 1 */
 for (numtimes = 0; numtimes < total_count; numtimes++) {
 cntr += 1;
 shmp->cntr = cntr;
 /* Sleeping for a second for every thousand */
 sleep_time = cntr % 1000;
 if (sleep_time == 0)
 sleep(1);
 }
 shmp->write_complete = 1;
 sem_buf.sem_op = 1; /* Releasing the resource */
 retval = semop(semid, &sem_buf, 1);

 if (retval == -1) {
 perror("Semaphore Locked\n");
 return;
 }

 if (pid == 0)
 printf("SHM_WRITE: CHILD: Writing Done\n");
 else if (pid > 0)
 printf("SHM_WRITE: PARENT: Writing Done\n");
 return;
}

void remove_semaphore() {
 int semid;
 int retval;
 semid = semget(SEM_KEY, 1, 0);
 if (semid < 0) {
 perror("Remove Semaphore: Semaphore GET: ");
 return;
 }
 retval = semctl(semid, 0, IPC_RMID);
 if (retval == -1) {
 perror("Remove Semaphore: Semaphore CTL: ");
 return;
 }
 return;
}

Compilation and Execution Steps

Total Count is 10000
First Process

162

SHM_WRITE: PARENT: Now writing
Second Process
SHM_WRITE: PARENT: Writing Done
SHM_WRITE: CHILD: Now writing
SHM_WRITE: CHILD: Writing Done
Writing Process: Complete

Now, we will check the counter value by the reading process.

Execution Steps

Reading Process: Shared Memory: Counter is 20000
Reading Process: Reading Done, Detaching Shared Memory
Reading Process: Complete

shared variables

Using the shared variable, you can share data between loops on a single diagram or
between VIs across the network. In contrast to many existing data sharing methods in
LabVIEW, such as UDP/TCP, LabVIEW queues, and Real-Time FIFOs, you typically
configure the shared variable at edit time using property dialogs, and you do not need to
include configuration code in your application.

You can create two types of shared variables: single-process and network-published.
This paper discusses the single-process and the network-published shared variables in
detail. To create a shared variable, right-click on a computing device such as ―My
Computer‖ or a real-time target in the project tree, and select New»Variable to display
the shared variable properties dialog. Specify the configuration for the new variable in
the dialog presented.

You must have a project open to create a shared variable. To add a shared variable to a
project, right-click a target, a project library, or a folder within a project library in
the Project Explorer window and select New»Variable from the shortcut menu to
display the Shared Variable Properties dialog box. Select among the shared variable
configuration options and click the OK button.

If you right-click a target or a folder that is not inside a project library and
select New»Variable from the shortcut menu to create a shared variable, LabVIEW
creates a new project library and places the shared variable inside. Refer to the Shared
Variable Lifetime section for more information about variables and libraries.

Figure 1 shows the Shared Variable Properties dialog box for a single-process shared
variable. The LabVIEW Real-Time Module and the LabVIEW Datalogging and
Supervisory Control (DSC) Module provide additional features and configurable
properties to shared variables. Although in this example both the LabVIEW Real-Time
Module and the LabVIEW DSC Module are installed, you can use the features the

163

LabVIEW DSC Module adds only for network-published shared variables.

Figure 1. Single-Process Shared Variable Properties

Data Type

You can select from a large number of standard data types for a new shared variable. In
addition to these standard data types, you can specify a custom data type by
selecting Custom from the Data Type pull-down list and navigating to a custom control.
However, some features such as scaling and real-time FIFOs will not work with some
custom datatypes. Also, if you have the LabVIEW DSC Module installed, alarming is
limited to bad status notifications when using custom datatypes.

After you configure the shared variable properties and click the OK button, the shared
variable appears in your Project Explorer window under the library or target you
selected, as shown in Figure 2.

164

Figure 2. Shared Variable in the Project

The target to which the shared variable belongs is the target from which LabVIEW
deploys and hosts the shared variable. Refer to the Deployment and Hosting section for
more information about deploying and hosting shared variables.

Variable References

After you add a shared variable to a LabVIEW project, you can drag the shared variable
to the block diagram of a VI to read or write the shared variable, as shown in Figure 3.
The read and write nodes on the diagram are called Shared Variable nodes.

165

Figure 3. Reading and Writing to a Shared Variable Using a Shared Variable Node

You can set a Shared Variable node as absolute or target-relative depending on how
you want the node to connect to the variable. An absolute Shared Variable node
connects to the shared variable on the target on which you created the variable. A
target-relative Shared Variable node connects to the shared variable on the target on
which you run the VI that contains the node.

If you move a VI that contains a target-relative Shared Variable node to a new target,
you also must move the shared variable to the new target. Use target-relative Shared
Variable nodes when you expect to move VIs and variables to other targets.

Shared Variable nodes are absolute by default. Right-click a node and
select Reference Mode»Target Relative or Reference Mode»Absolute to
change how the Shared Variable node connects to the shared variable.

Introduction to socket programming

How do we build Internet applications? In this lecture, we will discuss the socket API
and support for TCP communications between end hosts. Socket programing is the key
API for programming distributed applications on the Internet. Note, we do not cover the
UDP API in the course. If interested take CS60 Computer Networks.

Socket program is a key skill needed for the robotics project for exerting control - in this
case the controller running on your laptop will connect to the server running on the bot.

Goals

We plan to learn the following from these lectures:

 What is a socket?

 The client-server model

 Byte order

 TCP socket API

 Concurrent server design

 Example of echo client and iterative server

 Example of echo client and concurrent server

166

The basics

Program. A program is an executable file residing on a disk in a directory. A program is
read into memory and is executed by the kernel as a result of an exec() function.
The exec() has six variants, but we only consider the simplest one (exec()) in this
course.

Process. An executing instance of a program is called a process. Sometimes, task is
used instead of process with the same meaning. UNIX guarantees that every process
has a unique identifier called the process ID. The process ID is always a non-negative
integer.

File descriptors. File descriptors are normally small non-negative integers that the
kernel uses to identify the files being accessed by a particular process. Whenever it
opens an existing file or creates a new file, the kernel returns a file descriptor that is
used to read or write the file. As we will see in this course, sockets are based on a very
similar mechanism (socket descriptors).

The client-server model

The client-server model is one of the most used communication paradigms in networked
systems. Clients normally communicates with one server at a time. From a server‘s
perspective, at any point in time, it is not unusual for a server to be communicating with
multiple clients. Client need to know of the existence of and the address of the server,
but the server does not need to know the address of (or even the existence of) the client
prior to the connection being established

Client and servers communicate by means of multiple layers of network protocols. In
this course we will focus on the TCP/IP protocol suite.

The scenario of the client and the server on the same local network (usually called LAN,
Local Area Network) is shown in Figure 1

Figure 1: Client and server on the same Ethernet communicating using TCP/IP.

https://www.cs.dartmouth.edu/~campbell/cs50/socketprogramming.html#x1-60011

167

The client and the server may be in different LANs, with both LANs connected to a Wide
Area Network (WAN) by means of routers. The largest WAN is the Internet, but
companies may have their own WANs. This scenario is depicted in Figure 2.

Figure 2: Client and server on different LANs connected through WAN/Internet.

The flow of information between the client and the server goes down the protocol stack
on one side, then across the network and then up the protocol stack on the other side.

Transmission Control Protocol (TCP)

TCP provides a connection oriented service, since it is based on connections between
clients and servers.

TCP provides reliability. When a TCP client send data to the server, it requires an
acknowledgement in return. If an acknowledgement is not received, TCP automatically
retransmit the data and waits for a longer period of time.

TCP is instead a byte-stream protocol, without any boundaries at all.

TCP is described in RFC 793, RFC 1323, RFC 2581 and RFC 3390.

https://www.cs.dartmouth.edu/~campbell/cs50/socketprogramming.html#x1-60022

168

Socket addresses

IPv4 socket address structure is named sockaddr_in and is defined by including
the <netinet/in.h> header.

The POSIX definition is the following:

struct in_addr{

in_addr_t s_addr; /*32 bit IPv4 network byte ordered address*/

};

struct sockaddr_in {

 uint8_t sin_len; /* length of structure (16)*/

 sa_family_t sin_family; /* AF_INET*/

 in_port_t sin_port; /* 16 bit TCP or UDP port number */

 struct in_addr sin_addr; /* 32 bit IPv4 address*/

 char sin_zero[8]; /* not used but always set to zero */

};

The uint8_t datatype is unsigned 8-bit integer.

Generic Socket Address Structure

A socket address structure is always passed by reference as an argument to any socket
functions. But any socket function that takes one of these pointers as an argument must
deal with socket address structures from any of the supported protocol families.

A problem arises in declaring the type of pointer that is passed. With ANSI C, the
solution is to use void * (the generic pointer type). But the socket functions predate the
definition of ANSI C and the solution chosen was to define a generic socket address as
follows:

struct sockaddr {

 uint8_t sa_len;

 sa_family_t sa_family; /* address family: AD_xxx value */

 char sa_data[14];

};

169

Host Byte Order to Network Byte Order Conversion

There are two ways to store two bytes in memory: with the lower-order byte at the
starting address (little-endian byte order) or with the high-order byte at the starting
address (big-endian byte order). We call them collectively host byte order. For example,
an Intel processor stores the 32-bit integer as four consecutives bytes in memory in the
order 1-2-3-4, where 1 is the most significant byte. IBM PowerPC processors would
store the integer in the byte order 4-3-2-1.

Networking protocols such as TCP are based on a specific network byte order. The
Internet protocols use big-endian byte ordering.

The htons(), htonl(), ntohs(), and ntohl() Functions

The follwowing functions are used for the conversion:

#include <netinet/in.h>

uint16_t htons(uint16_t host16bitvalue);

uint32_t htonl(uint32_t host32bitvalue);

uint16_t ntohs(uint16_t net16bitvalue);

uint32_t ntohl(uint32_t net32bitvalue);

The first two return the value in network byte order (16 and 32 bit, respectively). The
latter return the value in host byte order (16 and 32 bit, respectively).

TCP Socket API

The sequence of function calls for the client and a server participating in a TCP
connection is presented in Figure 3.

https://www.cs.dartmouth.edu/~campbell/cs50/socketprogramming.html#x1-90013

170

Figure 3: TCP client-server.

As shown in the figure, the steps for establishing a TCP socket on the client side are the
following:

171

 Create a socket using the socket() function;

 Connect the socket to the address of the server using the connect() function;

 Send and receive data by means of the read() and write() functions.

The steps involved in establishing a TCP socket on the server side are as follows:

 Create a socket with the socket() function;

 Bind the socket to an address using the bind() function;

 Listen for connections with the listen() function;

 Accept a connection with the accept() function system call. This call typically
blocks until a client connects with the server.

 Send and receive data by means of send() and receive().

The socket() Function

The first step is to call the socket function, specifying the type of communication
protocol (TCP based on IPv4, TCP based on IPv6, UDP).

The function is defined as follows:

#include <sys/socket.h>

int socket (int family, int type, int protocol);

where family specifies the protocol family (AF_INET for the IPv4 protocols), type is a
constant described the type of socket (SOCK_STREAM for stream sockets
and SOCK_DGRAM for datagram sockets.

The function returns a non-negative integer number, similar to a file descriptor, that we
define socket descriptor or -1 on error.

The connect() Function

The connect() function is used by a TCP client to establish a connection with a TCP
server/

The function is defined as follows:

172

#include <sys/socket.h>

int connect (int sockfd, const struct sockaddr *servaddr, socklen_t addrlen);

where sockfd is the socket descriptor returned by the socket function.

The function returns 0 if the it succeeds in establishing a connection (i.e., successful
TCP three-way handshake, -1 otherwise.

The client does not have to call bind() in Section before calling this function: the kernel
will choose both an ephemeral port and the source IP if necessary.

The bind() Function

The bind() assigns a local protocol address to a socket. With the Internet protocols, the
address is the combination of an IPv4 or IPv6 address (32-bit or 128-bit) address along
with a 16 bit TCP port number.

The function is defined as follows:

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *servaddr, socklen_t addrlen);

where sockfd is the socket descriptor, myaddr is a pointer to a protocol-specific address
and addrlen is the size of the address structure.

bind() returns 0 if it succeeds, -1 on error.

This use of the generic socket address sockaddr requires that any calls to these
functions must cast the pointer to the protocol-specific address structure. For example
for and IPv4 socket structure:

struct sockaddr_in serv; /* IPv4 socket address structure */

bind(sockfd, (struct sockaddr*) &serv, sizeof(serv))

A process can bind a specific IP address to its socket: for a TCP client, this assigns the
source IP address that will be used for IP datagrams sent on the sockets. For a TCP
server, this restricts the socket to receive incoming client connections destined only to
that IP address.

173

Normally, a TCP client does not bind an IP address to its socket. The kernel chooses
the source IP socket is connected, based on the outgoing interface that is used. If a
TCP server does not bind an IP address to its socket, the kernel uses the destination IP
address of the incoming packets as the server‘s source address.

bind() allows to specify the IP address, the port, both or neither.

The table below summarizes the combinations for IPv4.

IP Address IP Port Result

INADDR_ANY 0 Kernel chooses IP address and port

INADDR_ANY non zero Kernel chooses IP address, process specifies port

Local IP address 0 Process specifies IP address, kernel chooses port

Local IP address non zero Process specifies IP address and port

The listen() Function

The listen() function converts an unconnected socket into a passive socket, indicating
that the kernel should accept incoming connection requests directed to this socket. It is
defined as follows:

#include <sys/socket.h>

int listen(int sockfd, int backlog);

where sockfd is the socket descriptor and backlog is the maximum number of
connections the kernel should queue for this socket. The backlog argument provides an
hint to the system of the number of outstanding connect requests that is should
enqueue in behalf of the process. Once the queue is full, the system will reject
additional connection requests. The backlog value must be chosen based on the
expected load of the server.

The function listen() return 0 if it succeeds, -1 on error.

The accept() Function

The accept() is used to retrieve a connect request and convert that into a request. It is
defined as follows:

#include <sys/socket.h>

174

int accept(int sockfd, struct sockaddr *cliaddr,

socklen_t *addrlen);

where sockfd is a new file descriptor that is connected to the client that called
the connect(). The cliaddr and addrlen arguments are used to return the protocol
address of the client. The new socket descriptor has the same socket type and address
family of the original socket. The original socket passed to accept() is not associated
with the connection, but instead remains available to receive additional connect
requests. The kernel creates one connected socket for each client connection that is
accepted.

If we don‘t care about the client‘s identity, we can set the cliaddr and addrlen to NULL.
Otherwise, before calling the accept function, the cliaddr parameter has to be set to a
buffer large enough to hold the address and set the interger pointed by addrlen to the
size of the buffer.

The send() Function

Since a socket endpoint is represented as a file descriptor, we can use read and write to
communicate with a socket as long as it is connected. However, if we want to specify
options we need another set of functions.

For example, send() is similar to write() but allows to specify some options. send() is
defined as follows:

#include <sys/socket.h>

ssize_t send(int sockfd, const void *buf, size_t nbytes, int flags);

where buf and nbytes have the same meaning as they have with write. The additional
argument flags is used to specify how we want the data to be transmitted. We will not
consider the possible options in this course. We will assume it equal to 0.

The function returns the number of bytes if it succeeds, -1 on error.

The receive() Function

The recv() function is similar to read(), but allows to specify some options to control how
the data are received. We will not consider the possible options in this course. We will
assume it is equal to 0.

receive is defined as follows:

175

#include <sys/socket.h>

ssize_t recv(int sockfd, void *buf, size_t nbytes, int flags);

The function returns the length of the message in bytes, 0 if no messages are available
and peer had done an orderly shutdown, or -1 on error.

The close() Function

The normal close() function is used to close a socket and terminate a TCP socket. It
returns 0 if it succeeds, -1 on error. It is defined as follows:

#include <unistd.h>

int close(int sockfd);

Concurrent Servers

There are two main classes of servers, iterative and concurrent. An iterative server
iterates through each client, handling it one at a time. A concurrent server handles
multiple clients at the same time. The simplest technique for a concurrent server is to
call the fork function, creating one child process for each client. An alternative technique
is to use threads instead (i.e., light-weight processes).

The fork() function

The fork() function is the only way in Unix to create a new process. It is defined as
follows:

#include <unist.h>

pid_t fork(void);

The function returns 0 if in child and the process ID of the child in parent; otherwise, -1
on error.

In fact, the function fork() is called once but returns twice. It returns once in the calling
process (called the parent) with the process ID of the newly created process (its child).
It also returns in the child, with a return value of 0. The return value tells whether the
current process is the parent or the child.

176

Example

A typical concurrent server has the following structure:

pid_t pid;

int listenfd, connfd;

listenfd = socket(...);

/***fill the socket address with server‘s well known port***/

bind(listenfd, ...);

listen(listenfd, ...);

for (; ;) {

 connfd = accept(listenfd, ...); /* blocking call */

 if ((pid = fork()) == 0) {

 close(listenfd); /* child closes listening socket */

 /***process the request doing something using connfd ***/

 /* */

 close(connfd);

 exit(0); /* child terminates

 }

 close(connfd); /*parent closes connected socket*/

}

}

When a connection is established, accept returns, the server calls fork, and the child
process services the client (on the connected socket connfd). The parent process waits
for another connection (on the listening socket listenfd. The parent closes the connected
socket since the child handles the new client. The interactions among client and server
are presented in Figure 4.

https://www.cs.dartmouth.edu/~campbell/cs50/socketprogramming.html#x1-100374

177

Figure 4: Example of interaction among a client and a concurrent server.

178

TCP Client/Server Examples

We now present a complete example of the implementation of a TCP based echo
server to summarize the concepts presented above. We present an iterative and a
concurrent implementation of the server.

We recommend that you run the client and server on different machines so there is a
TCP connection over the Internet. However, you can also use a local TCP connection
bewteen the client and server processes using the IP address 127.0.0.1 as the address
given to the client. The localhost (meaning ‖this computer‖) is the standard hostname
given to the address of the loopback network interface.

Please note that socket programming regularly resolve names of machines such as
wildcat.cs.dartmouth.edu to a 32 bit IP address needed to make a connect(). In class
we have interacted directly with the DNS (domain name server) using the host
command:

$# you can use localhost or 127.0.0.1 for testing the client and server on the same mac

hine

$ host localhost

localhost has address 127.0.0.1

$# find the name of the machine you are logged into

$ hostname

bear.cs.dartmouth.edu

$# find the IP address of the machine

$ host bear

bear.cs.dartmouth.edu has address 129.170.213.32

bear.cs.dartmouth.edu mail is handled by 0 mail.cs.dartmouth.edu.

$# If you have the dot IP address form you can find the name

$ host 129.170.213.32

32.213.170.129.in-addr.arpa domain name pointer bear.cs.dartmouth.edu.

179

Host allows us to get the host IP address by name or get the host name given the IP
address.

Luckly you don‘t have to call ―host‖ from your code. There are two commands that you
can use:

struct hostent *gethostbyname(const char *name);

struct hostent *gethostbyaddr(const char *addr, int len, int type);

echoClient.c source: echoClient.c

TCP Echo Client

#include <stdlib.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <arpa/inet.h>

#define MAXLINE 4096 /*max text line length*/

#define SERV_PORT 3000 /*port*/

int

main(int argc, char **argv)

{

 int sockfd;

 struct sockaddr_in servaddr;

 char sendline[MAXLINE], recvline[MAXLINE];

 //basic check of the arguments

 //additional checks can be inserted

 if (argc !=2) {

 perror("Usage: TCPClient <IP address of the server");

 exit(1);

 }

 //Create a socket for the client

http://www.cs.dartmouth.edu/~campbell/cs50/echoClient.c

180

 //If sockfd<0 there was an error in the creation of the socket

 if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) <0) {

 perror("Problem in creating the socket");

 exit(2);

 }

 //Creation of the socket

 memset(&servaddr, 0, sizeof(servaddr));

 servaddr.sin_family = AF_INET;

 servaddr.sin_addr.s_addr= inet_addr(argv[1]);

 servaddr.sin_port = htons(SERV_PORT); //convert to big-endian order

 //Connection of the client to the socket

 if (connect(sockfd, (struct sockaddr *) &servaddr, sizeof(servaddr))<0) {

 perror("Problem in connecting to the server");

 exit(3);

 }

 while (fgets(sendline, MAXLINE, stdin) != NULL) {

 send(sockfd, sendline, strlen(sendline), 0);

 if (recv(sockfd, recvline, MAXLINE,0) == 0){

 //error: server terminated prematurely

 perror("The server terminated prematurely");

 exit(4);

 }

 printf("%s", "String received from the server: ");

 fputs(recvline, stdout);

 }

 exit(0);

}

echoServer.c source: echoServer.c

TCP Iterative Server

#include <stdlib.h>

#include <stdio.h>

http://www.cs.dartmouth.edu/~campbell/cs50/echoServer.c

181

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#define MAXLINE 4096 /*max text line length*/

#define SERV_PORT 3000 /*port*/

#define LISTENQ 8 /*maximum number of client connections */

int main (int argc, char **argv)

{

 int listenfd, connfd, n;

 socklen_t clilen;

 char buf[MAXLINE];

 struct sockaddr_in cliaddr, servaddr;

 //creation of the socket

 listenfd = socket (AF_INET, SOCK_STREAM, 0);

 //preparation of the socket address

 servaddr.sin_family = AF_INET;

 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

 servaddr.sin_port = htons(SERV_PORT);

 bind (listenfd, (struct sockaddr *) &servaddr, sizeof(servaddr));

 listen (listenfd, LISTENQ);

 printf("%s\n","Server running...waiting for connections.");

 for (; ;) {

 clilen = sizeof(cliaddr);

 connfd = accept (listenfd, (struct sockaddr *) &cliaddr, &clilen);

 printf("%s\n","Received request...");

 while ((n = recv(connfd, buf, MAXLINE,0)) > 0) {

 printf("%s","String received from and resent to the client:");

 puts(buf);

182

 send(connfd, buf, n, 0);

 }

 if (n < 0) {

 perror("Read error");

 exit(1);

 }

 close(connfd);

 }

 //close listening socket

 close (listenfd);

}

Localhost Execution of Client/Server

To run the client and server try the following. It is best if you can run the server and
client on different machines. But we will first show how to test the client and server on
the same host using the locahost 127.0.0.1

$# first mygcc the client and server

$ mygcc -o echoClient echoClient.c

$ mygcc -o echoServer echoServer.c

$# first run the server in background

$./echoServer&

[1] 341

$ Server running...waiting for connections.

$ #Now connect using the localhost address 127.0.0.1 and then type something

$ # the control C out of the client and ps and kill the server

$./echoClient 127.0.0.1

Received request...

Hello CS23!

String received from and resent to the client:Hello CS23!

String received from the server: Hello CS23!

183

^C

$ ps

 PID TTY TIME CMD

 208 ttys000 0:00.04 -bash

 341 ttys000 0:00.00 ./echoServer

 236 ttys001 0:00.01 -bash

$ kill -9 341

$

[1]+ Killed ./echoServer

Remote Execution of Client/Server

Now lets do the same thing but run the server on a remote machine and client locally.
This time we will have to use the host command to find the IP address of the host we
run the server on. The rest is the same as the localhost example above.

First, we ssh into bear and run the server and get the local IP address of bear

$ssh campbell@bear.cs.dartmouth.edu

campbell@bear.cs.dartmouth.edu‘s password:

Last login: Sun Feb 14 23:27:30 2010 from c-71-235-190-26.hsd1.ct.comcast.net

$ cd public_html/cs23

$ mygcc -o echoServer echoServer.c

$./echoServer&

[1] 6020

$ Server running...waiting for connections.

$ host bear

bear.cs.dartmouth.edu has address 129.170.213.32

bear.cs.dartmouth.edu mail is handled by 0 mail.cs.dartmouth.edu.

Next, we start the client on our local machine and type something. We terminate the
same way as before

First, we ssh into bear and run the server and get the local IP address of bear

$# Just to show we are running on a different machine

$ hostname

andrew-campbells-macbook-pro.local

184

$./echoClient 129.170.213.32

Hello CS23!

String received from the server: Hello CS23!

^C

Notice, that when we type make a connection and type in ―Hello CS23!‖ we get the
following at the server.

$# Just to show we are running on a different machine

$ Received request...

String received from and resent to the client:Hello CS23!

$# Now we clean up

$ ps

 PID TTY TIME CMD

 5972 pts/2 00:00:00 bash

 6020 pts/2 00:00:00 echoServer

 6040 pts/2 00:00:00 ps

$ kill -9 6020

$

[1]+ Killed ./echoServer

conEchoServer.c source: conEchoServer.c

TCP Concurrent Echo Server

#include <stdlib.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#define MAXLINE 4096 /*max text line length*/

http://www.cs.dartmouth.edu/~campbell/cs50/conEchoServer.c

185

#define SERV_PORT 3000 /*port*/

#define LISTENQ 8 /*maximum number of client connections*/

int main (int argc, char **argv)

{

 int listenfd, connfd, n;

 pid_t childpid;

 socklen_t clilen;

 char buf[MAXLINE];

 struct sockaddr_in cliaddr, servaddr;

 //Create a socket for the soclet

 //If sockfd<0 there was an error in the creation of the socket

 if ((listenfd = socket (AF_INET, SOCK_STREAM, 0)) <0) {

 perror("Problem in creating the socket");

 exit(2);

 }

 //preparation of the socket address

 servaddr.sin_family = AF_INET;

 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

 servaddr.sin_port = htons(SERV_PORT);

 //bind the socket

 bind (listenfd, (struct sockaddr *) &servaddr, sizeof(servaddr));

 //listen to the socket by creating a connection queue, then wait for clients

 listen (listenfd, LISTENQ);

 printf("%s\n","Server running...waiting for connections.");

 for (; ;) {

 clilen = sizeof(cliaddr);

 //accept a connection

 connfd = accept (listenfd, (struct sockaddr *) &cliaddr, &clilen);

 printf("%s\n","Received request...");

186

 if ((childpid = fork ()) == 0) {//if it‘s 0, it‘s child process

 printf ("%s\n","Child created for dealing with client requests");

 //close listening socket

 close (listenfd);

 while ((n = recv(connfd, buf, MAXLINE,0)) > 0) {

 printf("%s","String received from and resent to the client:");

 puts(buf);

 send(connfd, buf, n, 0);

 }

 if (n < 0)

 printf("%s\n", "Read error");

 exit(0);

 }

 //close socket of the server

 close(connfd);

}

}

Remote Execution of concurrent Client/Server

Now, we run the server on a remote machine and then run two clients talking to the
same server. We use hostname so we know what machines we use in the example
below.

First, we start the concurrent server on a remote machine and get its IP address that the
clients will use.

$ mygcc -o conEchoServer conEchoServer.c

$./conEchoServer&

[1] 6075

$ Server running...waiting for connections.

$ hostname

bear.cs.dartmouth.edu

$ host bear

187

bear.cs.dartmouth.edu has address 129.170.213.32

bear.cs.dartmouth.edu mail is handled by 0 mail.cs.dartmouth.edu.

Next, we run one client on my local machine, as follows:

$# Just to show we are running on a different machine

$ hostname

andrew-campbells-macbook-pro.local

$./echoClient 129.170.213.32

Hello from andrew-campbells-macbook-pro.local

String received from the server: Hello from andrew-campbells-macbook-pro.local

Next, we run one client on my local machine, as follows:

$# Just to show we are running on a different machine

$ hostname

andrew-campbells-macbook-pro.local

$./echoClient 129.170.213.32

Hello from andrew-campbells-macbook-pro.local

String received from the server: Hello from andrew-campbells-macbook-pro.local

Notice, that when we type make a connection and type in ―Hello from andrew-
campbells-macbook-pro.local‖ we get the following at the server.

$ Received request...

Child created for dealing with client requests

String received from and resent to the client:Hello from andrew-campbells-macbook-

pro.local

Now, we ssh into a another machine and start a client

$ ssh campbell@moose.cs.dartmouth.edu

campbell@moose.cs.dartmouth.edu‘s password:

Last login: Mon Feb 8 10:25:01 2010 from 10.35.2.112

188

$ cd public_html/cs23

$ mygcc -o echoClient echoClient.c

$./echoClient 129.170.213.32

Hello from moose.cs.dartmouth.edu

String received from the server: Hello from moose.cs.dartmouth.edu

Over at the server we see that the new client is recognized proving that our concurrent
server can handle multiple clients at any one time; that is cool!

$Received request...

Child created for dealing with client requests

String received from and resent to the client:Hello from moose.cs.dartmouth.edu

189

Unit-IV

Unix System Administration

File System

A file system is a logical collection of files on a partition or disk. A partition is a
container for information and can span an entire hard drive if desired.

Your hard drive can have various partitions which usually contain only one file system,
such as one file system housing the /file system or another containing the /home file
system.

One file system per partition allows for the logical maintenance and management of
differing file systems.

Everything in Unix is considered to be a file, including physical devices such as DVD-
ROMs, USB devices, and floppy drives.

Directory Structure

Unix uses a hierarchical file system structure, much like an upside-down tree, with root
(/) at the base of the file system and all other directories spreading from there.

A Unix filesystem is a collection of files and directories that has the following properties
−

 It has a root directory (/) that contains other files and directories.

 Each file or directory is uniquely identified by its name, the directory in which it
resides, and a unique identifier, typically called an inode.

 By convention, the root directory has an inode number of 2 and
the lost+found directory has an inode number of 3. Inode numbers 0 and 1 are
not used. File inode numbers can be seen by specifying the -i option to ls
command.

 It is self-contained. There are no dependencies between one filesystem and
another.

The directories have specific purposes and generally hold the same types of
information for easily locating files. Following are the directories that exist on the major
versions of Unix −

Sr.No. Directory & Description

190

1
/

This is the root directory which should contain only the directories needed at the
top level of the file structure

2
/bin

This is where the executable files are located. These files are available to all
users

3
/dev

These are device drivers

4
/etc

Supervisor directory commands, configuration files, disk configuration files, valid
user lists, groups, ethernet, hosts, where to send critical messages

5
/lib

Contains shared library files and sometimes other kernel-related files

6
/boot

Contains files for booting the system

7
/home

Contains the home directory for users and other accounts

8
/mnt

Used to mount other temporary file systems, such as cdrom and floppy for
the CD-ROM drive and floppy diskette drive, respectively

9
/proc

Contains all processes marked as a file by process number or other information
that is dynamic to the system

191

10
/tmp

Holds temporary files used between system boots

11
/usr

Used for miscellaneous purposes, and can be used by many users. Includes
administrative commands, shared files, library files, and others

12
/var

Typically contains variable-length files such as log and print files and any other
type of file that may contain a variable amount of data

13
/sbin

Contains binary (executable) files, usually for system administration. For
example, fdisk and ifconfig utlities

14
/kernel

Contains kernel files

Navigating the File System

Now that you understand the basics of the file system, you can begin navigating to the
files you need. The following commands are used to navigate the system −

Sr.No. Command & Description

1
cat filename

Displays a filename

2
cd dirname

Moves you to the identified directory

3
cp file1 file2

192

Copies one file/directory to the specified location

4
file filename

Identifies the file type (binary, text, etc)

5
find filename dir

Finds a file/directory

6
head filename

Shows the beginning of a file

7
less filename

Browses through a file from the end or the beginning

8
ls dirname

Shows the contents of the directory specified

9
mkdir dirname

Creates the specified directory

10
more filename

Browses through a file from the beginning to the end

11
mv file1 file2

Moves the location of, or renames a file/directory

12
pwd

Shows the current directory the user is in

13
rm filename

Removes a file

193

14
rmdir dirname

Removes a directory

15
tail filename

Shows the end of a file

16
touch filename

Creates a blank file or modifies an existing file or its attributes

17
whereis filename

Shows the location of a file

18
which filename

Shows the location of a file if it is in your PATH

You can use Manpage Help to check complete syntax for each command mentioned
here.

The df Command

The first way to manage your partition space is with the df (disk free) command. The
command df -k (disk free) displays the disk space usage in kilobytes, as shown
below −

$df -k

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/vzfs 10485760 7836644 2649116 75% /

/devices 0 0 0 0% /devices

$

Some of the directories, such as /devices, shows 0 in the kbytes, used, and avail
columns as well as 0% for capacity. These are special (or virtual) file systems, and
although they reside on the disk under /, by themselves they do not consume disk
space.

The df -k output is generally the same on all Unix systems. Here's what it usually
includes −

Sr.No. Column & Description

https://www.tutorialspoint.com/unix/unix-manpage-help.htm

194

1
Filesystem

The physical file system name

2
kbytes

Total kilobytes of space available on the storage medium

3
used

Total kilobytes of space used (by files)

4
avail

Total kilobytes available for use

5
capacity

Percentage of total space used by files

6
Mounted on

What the file system is mounted on

You can use the -h (human readable) option to display the output in a format that
shows the size in easier-to-understand notation.

The du Command

The du (disk usage) command enables you to specify directories to show disk space
usage on a particular directory.

This command is helpful if you want to determine how much space a particular
directory is taking. The following command displays number of blocks consumed by
each directory. A single block may take either 512 Bytes or 1 Kilo Byte depending on
your system.

$du /etc

10 /etc/cron.d

126 /etc/default

6 /etc/dfs

...

$

The -h option makes the output easier to comprehend −

195

$du -h /etc

5k /etc/cron.d

63k /etc/default

3k /etc/dfs

...

$

Mounting the File System

A file system must be mounted in order to be usable by the system. To see what is
currently mounted (available for use) on your system, use the following command −

$ mount

/dev/vzfs on / type reiserfs (rw,usrquota,grpquota)

proc on /proc type proc (rw,nodiratime)

devpts on /dev/pts type devpts (rw)

$

The /mnt directory, by the Unix convention, is where temporary mounts (such as
CDROM drives, remote network drives, and floppy drives) are located. If you need to
mount a file system, you can use the mount command with the following syntax −

mount -t file_system_type device_to_mount directory_to_mount_to

For example, if you want to mount a CD-ROM to the directory /mnt/cdrom, you can
type −

$ mount -t iso9660 /dev/cdrom /mnt/cdrom

This assumes that your CD-ROM device is called /dev/cdrom and that you want to
mount it to /mnt/cdrom. Refer to the mount man page for more specific information or
type mount -h at the command line for help information.

After mounting, you can use the cd command to navigate the newly available file
system through the mount point you just made.

Unmounting the File System

To unmount (remove) the file system from your system, use the umount command by
identifying the mount point or device.

For example, to unmount cdrom, use the following command −

$ umount /dev/cdrom

The mount command enables you to access your file systems, but on most modern
Unix systems, the automount function makes this process invisible to the user and
requires no intervention.

User and Group Quotas

196

The user and group quotas provide the mechanisms by which the amount of space
used by a single user or all users within a specific group can be limited to a value
defined by the administrator.

Quotas operate around two limits that allow the user to take some action if the amount
of space or number of disk blocks start to exceed the administrator defined limits −

 Soft Limit − If the user exceeds the limit defined, there is a grace period that
allows the user to free up some space.

 Hard Limit − When the hard limit is reached, regardless of the grace period, no
further files or blocks can be allocated.

There are a number of commands to administer quotas −

Sr.No. Command & Description

1
quota

Displays disk usage and limits for a user of group

2
edquota

This is a quota editor. Users or Groups quota can be edited using this command

3
quotacheck

Scans a filesystem for disk usage, creates, checks and repairs quota files

4
setquota

This is a command line quota editor

5
quotaon

This announces to the system that disk quotas should be enabled on one or
more filesystems

6
quotaoff

This announces to the system that disk quotas should be disabled for one or
more filesystems

197

7
repquota

This prints a summary of the disc usage and quotas for the specified file systems

mounting and unmounting file system

Before you can access the files on a file system, you need to mount the file system.
Mounting a file system attaches that file system to a directory (mount point) and makes
it available to the system. The root (/) file system is always mounted. Any other file
system can be connected or disconnected from the root (/) file system.

When you mount a file system, any files or directories in the underlying mount point
directory are unavailable as long as the file system is mounted. These files are not
permanently affected by the mounting process, and they become available again when
the file system is unmounted. However, mount directories are typically empty, because
you usually do not want to obscure existing files.

For example, the figure below shows a local file system, starting with a root (/) file
system and subdirectories sbin, etc, and opt.

Now, say you wanted to access a local file system from the /opt file system that
contains a set of unbundled products.

First, you must create a directory to use as a mount point for the file system you want to
mount, for example, /opt/unbundled. Once the mount point is created, you can mount
the file system (by using the mount command), which makes all of the files and
directories in /opt/unbundled available, as shown in the figure below. See Chapter 36,
Mounting and Unmounting File Systems (Tasks) for detailed instructions on how to
perform these tasks.

The Mounted File System Table

Whenever you mount or unmount a file system, the /etc/mnttab (mount table) file is
modified with the list of currently mounted file systems. You can display the contents of
this file with the cat or more commands, but you cannot edit it. Here is an example of
an /etc/mnttab file:

$ more /etc/mnttab
/dev/dsk/c0t0d0s0 / ufs rw,intr,largefiles,onerror=panic,suid,dev=2200000 938557523
/proc /proc proc dev=3180000 938557522
fd /dev/fd fd rw,suid,dev=3240000 938557524

https://docs.oracle.com/cd/E19455-01/805-7228/6j6q7uev0/index.html
https://docs.oracle.com/cd/E19455-01/805-7228/6j6q7uev0/index.html

198

mnttab /etc/mnttab mntfs dev=3340000 938557526
swap /var/run tmpfs dev=1 938557526
swap /tmp tmpfs dev=2 938557529
/dev/dsk/c0t0d0s7 /export/home ufs rw,intr,largefiles,onerror=panic,suid,dev=2200007
938557529
$

The Virtual File System Table

It would be a very time-consuming and error-prone task to manually mount file systems
every time you wanted to access them. To fix this, the virtual file system table
(the /etc/vstab file) was created to maintain a list of file systems and how to mount them.
The /etc/vfstab file provides two important features: you can specify file systems to
automatically mount when the system boots, and you can mount file systems by using
only the mount point name, because the /etc/vfstab file contains the mapping between
the mount point and the actual device slice name.

A default /etc/vfstab file is created when you install a system depending on the
selections you make when installing system software; however, you can edit
the /etc/vfstab file on a system whenever you want. To add an entry, the main
information you need to specify is the device where the file system resides, the name of
the mount point, the type of the file system, whether you want it to mount automatically
when the system boots (by using the mountall command), and any mount options.

The following is an example of an /etc/vfstab file. Comment lines begin with #. This
example shows an /etc/vfstab file for a system with two disks (c0t0d0 and c0t3d0).

$ more /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
/dev/dsk/c0t0d0s0 /dev/rdsk/c0t0d0s0 / ufs 1 no -
/proc - /proc proc - no -
/dev/dsk/c0t0d0s1 - - swap - no -
swap - /tmp tmpfs - yes -
/dev/dsk/c0t0d0s6 /dev/rdsk/c0t0d0s6 /usr ufs 2 no -
/dev/dsk/c0t3d0s7 /dev/rdsk/c0t3d0s7 /test ufs 2 yes -
$

In the above example, the last entry specifies that a UFS file system on
the /dev/dsk/c0t3d0s7 slice will be automatically mounted on the /test mount point when
the system boots. Note that, for root (/) and /usr, the mount at boot field value is
specified as no, because these file systems are mounted by the kernel as part of the
boot sequence before the mountall command is run.

199

See Chapter 36, Mounting and Unmounting File Systems (Tasks) for descriptions of
each of the /etc/vfstab fields and information on how to edit and use the file.

The NFS Environment

NFS is a distributed file system service that can be used to share resources (files or
directories) from one system, typically a server, with other systems across the network.
For example, you might want to share third-party applications or source files with users
on other systems.

NFS makes the actual physical location of the resource irrelevant to the user. Instead of
placing copies of commonly used files on every system, NFS allows you to place one
copy on one system's disk and let all other systems access it across the network. Under
NFS, remote files are virtually indistinguishable from local ones.

A system becomes an NFS server if it has resources to share over the network. A
server keeps a list of currently shared resources and their access restrictions (such as
read/write or read-only).

When you share a resource, you make it available for mounting by remote systems.

You can share a resource in these ways:

 By using the share or shareall command

 By adding an entry to the /etc/dfs/dfstab (distributed file system table) file and
rebooting the system

See Chapter 36, Mounting and Unmounting File Systems (Tasks) for information on
how to share resources. See System Administration Guide, Volume 3 for a complete
description of NFS.

AutoFS

You can mount NFS file system resources by using a client-side service called
automounting (or AutoFS), which enables a system to automatically mount and
unmount NFS resources whenever you access them. The resource remains mounted
as long as you remain in the directory and are using a file. If the resource is not
accessed for a certain period of time, it is automatically unmounted.

AutoFS provides the following features:

 NFS resources don't need to be mounted when the system boots, which saves
booting time.

https://docs.oracle.com/cd/E19455-01/805-7228/6j6q7uev0/index.html
https://docs.oracle.com/cd/E19455-01/805-7228/6j6q7uev0/index.html
https://docs.oracle.com/docs/cd/E19455-01/806-0916/index.html

200

 Users don't need to know the root password to mount and unmount NFS
resources.

 Network traffic might be reduced, since NFS resources are only mounted when
they are in use.

The AutoFS service is initialized by automount, which is run automatically when a
system is booted. The automount daemon, automountd, runs continuously and is
responsible for the mounting and unmounting of the NFS file systems on an as-needed
basis. By default, the Solaris operating environment automounts /home.

AutoFS works with file systems specified in the name service. This information can be
maintained in NIS, NIS+, or local /etc files. With AutoFS, you can specify multiple
servers to provide the same file system. This way, if one of the servers is down, AutoFS
can try to mount from another machine. You can specify which servers are preferred for
each resource in the maps by assigning each server a weighting factor.

See System Administration Guide, Volume 3 for complete information on how to set up
and administer AutoFS.

The Cache File System (CacheFS)

If you want to improve the performance and scalability of an NFS or CD-ROM file
system, you should use the Cache File System (CacheFS). CacheFS is a general
purpose file system caching mechanism that improves NFS server performance and
scalability by reducing server and network load.

Designed as a layered file system, CacheFS provides the ability to cache one file
system on another. In an NFS environment, CacheFS increases the client per server
ratio, reduces server and network loads, and improves performance for clients on slow
links, such as Point-to-Point Protocol (PPP). You can also combine CacheFS with the
AutoFS service to help boost performance and scalability.

See Chapter 37, The Cache File System (Tasks) for detailed information about
CacheFS.

Deciding How to Mount File Systems

The table below provides guidelines on mounting file systems based on how you use
them.

Table 34-3 Determining How to Mount File Systems

If You Need to Mount
...

Then You Should Use ...

https://docs.oracle.com/docs/cd/E19455-01/806-0916/index.html
https://docs.oracle.com/cd/E19455-01/805-7228/6j6q7uev8/index.html

201

If You Need to Mount
...

Then You Should Use ...

Local or remote file
systems infrequently

The mount command entered manually from the command
line.

Local file systems
frequently

The /etc/vfstab file, which will mount the file system
automatically when the system is booted in multi-user state.

Remote file systems
frequently, such as
home directories

 The /etc/vfstab file, which will automatically mount
the file system when the system is booted in multi-
user state.

 AutoFS, which will automatically mount or unmount
the file system when you change into (mount) or out
of (unmount) the directory.

To enhance performance, you can also cache the remote
file systems by using CacheFS.

System booting

The BIOS, operating system and hardware components of a computer system should
all be working correctly for it to boot. If any of these elements fail, it leads to a failed
boot sequence.

System Boot Process

The following diagram demonstrates the steps involved in a system boot process −

202

Here are the steps −

 The CPU initializes itself after the power in the computer is first turned on. This is
done by triggering a series of clock ticks that are generated by the system clock.

 After this, the CPU looks for the system‘s ROM BIOS to obtain the first instruction
in the start-up program. This first instruction is stored in the ROM BIOS and it
instructs the system to run POST (Power On Self Test) in a memory address that
is predetermined.

 POST first checks the BIOS chip and then the CMOS RAM. If there is no battery
failure detected by POST, then it continues to initialize the CPU.

 POST also checks the hardware devices, secondary storage devices such as
hard drives, ports etc. And other hardware devices such as the mouse and
keyboard. This is done to make sure they are working properly.

 After POST makes sure that all the components are working properly, then the
BIOS finds an operating system to load.

 In most computer system‘s, the operating system loads from the C drive onto the
hard drive. The CMOS chip typically tells the BIOS where the operating system is
found.

 The order of the different drives that CMOS looks at while finding the operating
system is known as the boot sequence. This sequence can be changed by
changing the CMOS setup.

 After finding the appropriate boot drive, the BIOS first finds the boot record which
tells it to find the beginning of the operating system.

 After the initialization of the operating system, the BIOS copies the files into the
memory. Then the operating system controls the boot process.

 In the end, the operating system does a final inventory of the system memory
and loads the device drivers needed to control the peripheral devices.

 The users can access the system applications to perform various tasks.

Without the system boot process, the computer users would have to download all the
software components, including the ones not frequently required. With the system boot,
only those software components need to be downloaded that are legitimately required
and all extraneous components are not required. This process frees up a lot of space in
the memory and consequently saves a lot of time.

203

shutting down

A shutdown point is a level of operations at which a company experiences no benefit

for continuing operations and therefore decides to shut down temporarily—or in some

cases permanently. It results from the combination of output and price where the

company earns just enough revenue to cover its total variable costs. The shutdown

point denotes the exact moment when a company‘s (marginal) revenue is equal to its

variable (marginal) costs—in other words, it occurs when the marginal profit becomes

negative.

KEY TAKEAWAYS

 A shutdown point is a level of operations at which a company experiences no
benefit for continuing operations and therefore decides to shut down
temporarily—or in some cases permanently.

 A shutdown point results from the combination of output and price where the
company earns just enough revenue to cover its total variable costs.

 Shutdown points are based entirely on determining at what point the marginal
costs associated with operation exceed the revenue being generated by those
operations.

 When a company can earn a positive contribution margin, it should remain in
operation despite an overall marginal loss.

How the Shutdown Point Works

At the shutdown point, there is no economic benefit to continuing production. If an
additional loss occurs, either through a rise in variable costs or a fall in revenue, the
cost of operating will outweigh the revenue.

At that point, shutting down operations is more practical than continuing. If the reverse
occurs, continuing production is more practical. If a company can produce revenues
greater or equal to its total variable costs, it can use the additional revenues to pay
down its fixed costs, assuming fixed costs, such as lease contracts or other lengthy
obligations, will still be incurred when the firm shuts down. When a company can earn a
positive contribution margin, it should remain in operation despite an overall marginal
loss.

Special Considerations

The shutdown point does not include an analysis of fixed costs in its determination. It is
based entirely on determining at what point the marginal costs associated with
operation exceed the revenue being generated by those operations.

https://www.investopedia.com/terms/c/continuingoperations.asp
https://www.investopedia.com/terms/m/marginal-profit.asp
https://www.investopedia.com/video/play/variable-costs/
https://www.investopedia.com/terms/f/fixedcost.asp
https://www.investopedia.com/terms/c/contributionmargin.asp

204

Certain seasonal businesses, such as Christmas tree farmers, may shut down almost
entirely during the off-season. While fixed costs remain during the shutdown, variable
costs can be eliminated.

Fixed costs are the costs that remain regardless of what operations are taking place.
This can include payments to maintain the rights to the facility, such as rent or mortgage
payments, along with any minimum utilities that must be maintained. Minimum staffing
costs are considered fixed if a certain number of employees must be maintained even
when operations cease.

Variable costs are more closely tied to actual operations. This can include but is not
limited to, employee wages for those whose positions are tied directly to production,
certain utility costs, or the cost of the materials required for production.

Types of Shutdown Points
The length of a shutdown may be temporary or permanent, depending on the nature of
the economic conditions leading to the shutdown. For non-seasonal goods, an
economic recession may reduce demand from consumers, forcing a temporary
shutdown (in full or in part) until the economy recovers.

Other times, demand dries up completely due to changing consumer preferences or
technological change. For instance, nobody produces cathode-ray tube (CRT)
televisions or computer monitors any longer, and it would be a losing prospect to open a
factory these days to produce them.

Other businesses may experience fluctuations or produce some goods year-round,
while others are only produced seasonally. For example, Cadbury chocolate bars are
produced year-round, while Cadbury Cream Eggs are considered a seasonal product.
The main operations, focused on the chocolate bars, may remain operational year-
round, while the cream egg operations may go through periods of a shutdown during
the off-season.

handling user account

Account management, authentication and password management can be tricky. For
many developers, account management is a dark corner that doesn't get enough
attention. For product managers and customers, the resulting experience often falls
short of expectations.

Fortunately, Google Cloud Platform (GCP) brings several tools to help you make good
decisions around the creation, secure handling and authentication of user accounts (in
this context, anyone who identifies themselves to your system — customers or internal
users). Whether you're responsible for a website hosted in Google Kubernetes Engine,
an API on Apigee, an app using Firebase or other service with authenticated users, this

https://www.investopedia.com/mortgage/mortgage-rates/payment-structure/
https://www.investopedia.com/mortgage/mortgage-rates/payment-structure/
https://www.investopedia.com/terms/r/recession.asp
https://cloud.google.com/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/apigee-api-management/
https://firebase.google.com/

205

post will lay out the best practices to ensure you have a safe, scalable, usable account
authentication system.

1. Hash those passwords

My most important rule for account management is to safely store sensitive user
information, including their password. You must treat this data as sacred and handle it
appropriately.

Do not store plaintext passwords under any circumstances. Your service should instead
store a cryptographically strong hash of the password that cannot be reversed —
 created with, for example, PBKDF2, Argon2, Scrypt, or Bcrypt. The hash should
be salted with a value unique to that specific login credential. Do not use deprecated
hashing technologies such as MD5, SHA1 and under no circumstances should you use
reversible encryption or try to invent your own hashing algorithm.

You should design your system assuming it will be compromised eventually. Ask
yourself "If my database were exfiltrated today, would my users' safety and security be
in peril on my service or other services they use? What can we do to mitigate the
potential for damage in the event of a leak?"

Another point: If you could possibly produce a user's password in plaintext at any time
outside of immediately after them providing it to you, there's a problem with your
implementation.

2. Allow for third-party identity providers if possible

Third-party identity providers enable you to rely on a trusted external service to
authenticate a user's identity. Google, Facebook and Twitter are commonly used
providers.

You can implement external identity providers alongside your existing internal
authentication system using a platform such as Firebase Auth. There are a number of
benefits that come with Firebase Auth, including simpler administration, smaller attack
surface and a multi-platform SDK. We'll touch on more benefits throughout this list. See
our case studies on companies that were able to integrate Firebase Auth in as little as
one day.

3. Separate the concept of user identity and user account

Your users are not an email address. They're not a phone number. They're not the
unique ID provided by an OAUTH response. Your users are the culmination of their
unique, personalized data and experience within your service. A well designed user
management system has low coupling and high cohesion between different parts of a
user's profile.

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet#Use_a_cryptographically_strong_credential-specific_salt
https://www.schneier.com/blog/archives/2011/04/schneiers_law.html
https://firebase.google.com/docs/auth/
https://firebase.google.com/docs/auth/case-studies/

206

Keeping the concepts of user account and credentials separate will greatly simplify the
process of implementing third-party identity providers, allowing users to change their
username and linking multiple identities to a single user account. In practical terms, it
may be helpful to have an internal global identifier for every user and link their profile
and authentication identity via that ID as opposed to piling it all in a single record.

4. Allow multiple identities to link to a single user account

A user who authenticates to your service using their username and password one week
might choose Google Sign-In the next without understanding that this could create a
duplicate account. Similarly, a user may have very good reason to link multiple email
addresses to your service. If you properly separated user identity and authentication, it
will be a simple process to link several identities to a single user.

Your backend will need to account for the possibility that a user gets part or all the way
through the signup process before they realize they're using a new third-party identity
not linked to their existing account in your system. This is most simply achieved by
asking the user to provide a common identifying detail, such as email address, phone or
username. If that data matches an existing user in your system, require them to also
authenticate with a known identity provider and link the new ID to their existing account.

5. Don't block long or complex passwords

NIST has recently updated guidelines on password complexity and strength. Since you
are (or will be very soon) using a strong cryptographic hash for password storage, a lot
of problems are solved for you. Hashes will always produce a fixed-length output no
matter the input length, so your users should be able to use passwords as long as they
like. If you must cap password length, only do so based on the maximum POST size
allowable by your servers. This is commonly well above 1MB. Seriously.

Your hashed passwords will be comprised of a small selection of known ASCII
characters. If not, you can easily convert a binary hash to Base64. With that in mind,
you should allow your users to use literally any characters they wish in their password. If
someone wants a password made of Klingon, Emoji and control characters with
whitespace on both ends, you should have no technical reason to deny them.

6. Don't impose unreasonable rules for usernames

It's not unreasonable for a site or service to require usernames longer than two or three
characters, block hidden characters and prevent whitespace at the beginning and end
of a username. However, some sites go overboard with requirements such as a
minimum length of eight characters or by blocking any characters outside of 7-bit ASCII
letters and numbers.

A site with tight restrictions on usernames may offer some shortcuts to developers, but it
does so at the expense of users and extreme cases will drive some users away.

https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/google-signin
https://firebase.google.com/docs/auth/web/account-linking
https://pages.nist.gov/800-63-3/sp800-63b.html#appendix-astrength-of-memorized-secrets
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Klingon_alphabets
https://en.wikipedia.org/wiki/Emoji#Unicode_blocks

207

There are some cases where the best approach is to assign usernames. If that's the
case for your service, ensure the assigned username is user-friendly insofar as they
need to recall and communicate it. Alphanumeric IDs should avoid visually ambiguous
symbols such as "Il1O0." You're also advised to perform a dictionary scan on any
randomly generated string to ensure there are no unintended messages embedded in
the username. These same guidelines apply to auto-generated passwords.

7. Allow users to change their username

It's surprisingly common in legacy systems or any platform that provides email accounts
not to allow users to change their username. There are very good reasons not to
automatically release usernames for reuse, but long-term users of your system will
eventually come up with a good reason to use a different username and they likely won't
want to create a new account.

You can honor your users' desire to change their usernames by allowing aliases and
letting your users choose the primary alias. You can apply any business rules you need
on top of this functionality. Some orgs might only allow one username change per year
or prevent a user from displaying anything but their primary username. Email providers
might ensure users are thoroughly informed of the risks before detaching an old
username from their account or perhaps forbid unlinking old usernames entirely.

Choose the right rules for your platform, but make sure they allow your users to grow
and change over time.

8. Let your users delete their accounts

A surprising number of services have no self-service means for a user to delete their
account and associated data. There are a number of good reasons for a user to close
an account permanently and delete all personal data. These concerns need to be
balanced against your security and compliance needs, but most regulated environments
provide specific guidelines on data retention. A common solution to avoid compliance
and hacking concerns is to let users schedule their account for automatic future
deletion.

In some circumstances, you may be legally required to comply with a user's request to
delete their data in a timely manner. You also greatly increase your exposure in the
event of a data breach where the data from "closed" accounts is leaked.

9. Make a conscious decision on session length

An often overlooked aspect of security and authentication is session length. Google
puts a lot of effort into ensuring users are who they say they are and will double-check
based on certain events or behaviors. Users can take steps to increase their security
even further.

https://www.computerworld.com/article/2838283/facebook-yahoo-prevent-use-of-recycled-email-addresses-to-hijack-accounts.html
http://ec.europa.eu/justice/data-protection/files/factsheets/factsheet_data_protection_en.pdf
https://firebase.google.com/docs/auth/web/auth-state-persistence
https://support.google.com/accounts/answer/7162782?co=GENIE.Platform%3DAndroid&hl=en
https://support.google.com/accounts/answer/7519408?hl=en&ref_topic=7189123
https://support.google.com/accounts/answer/7519408?hl=en&ref_topic=7189123

208

Your service may have good reason to keep a session open indefinitely for non-critical
analytics purposes, but there should be thresholds after which you ask for password,
2nd factor or other user verification.

Consider how long a user should be able to be inactive before re-authenticating. Verify
user identity in all active sessions if someone performs a password reset. Prompt for
authentication or 2nd factor if a user changes core aspects of their profile or when
they're performing a sensitive action. Consider whether it makes sense to disallow
logging in from more than one device or location at a time.

When your service does expire a user session or require re-authentication, prompt the
user in real-time or provide a mechanism to preserve any activity they have unsaved
since they were last authenticated. It's very frustrating for a user to fill out a long form,
submit it some time later and find out all their input has been lost and they must log in
again.

10. Use 2-Step Verification

Consider the practical impact on a user of having their account stolen when choosing
from 2-Step Verification (also known as two-factor authentication or just 2FA) methods.
SMS 2FA auth has been deprecated by NIST due to multiple weaknesses, however, it
may be the most secure option your users will accept for what they consider a trivial
service. Offer the most secure 2FA auth you reasonably can. Enabling third-party
identity providers and piggybacking on their 2FA is a simple means to boost your
security without great expense or effort.

11. Make user IDs case insensitive

Your users don't care and may not even remember the exact case of their username.
Usernames should be fully case-insensitive. It's trivial to store usernames and email
addresses in all lowercase and transform any input to lowercase before comparing.

Smartphones represent an ever-increasing percentage of user devices. Most of them
offer autocorrect and automatic capitalization of plain-text fields. Preventing this
behavior at the UI level might not be desirable or completely effective, and your service
should be robust enough to handle an email address or username that was
unintentionally auto-capitalized.

12. Build a secure auth system

If you're using a service like Firebase Auth, a lot of security concerns are handled for

you automatically. However, your service will always need to be engineered properly to

prevent abuse. Core considerations include implementing a password reset instead of

password retrieval, detailed account activity logging, rate limiting login attempts, locking

out accounts after too many unsuccessful login attempts and requiring two-factor

authentication for unrecognized devices or accounts that have been idle for extended

https://pages.nist.gov/800-63-3/sp800-63b.html#aal1reauth
https://www.google.com/landing/2step/
https://pages.nist.gov/800-63-3/sp800-63b.html
https://firebase.google.com/docs/auth/web/manage-users#send_a_password_reset_email

209

periods. There are many more aspects to a secure authentication system, so please

see the section below for links to more information.

Backup

Backup refers to the copying of physical or virtual files or databases to a secondary

location for preservation in case of equipment failure or catastrophe. The process of

backing up data is pivotal to a successful disaster recovery plan.

Enterprises back up data they deem to be vulnerable in the event of buggy software,

data corruption, hardware failure, malicious hacking, user error or other unforeseen

events. Backups capture and synchronize a point-in-time snapshot that is then used to

return data to its previous state.

Backup and recovery testing examines an organization's practices and technologies for

data security and data replication. The goal is to ensure rapid and reliable data retrieval

should the need arise. The process of retrieving backed-up data files is known as file

restoration.

The terms data backup and data protection are often used interchangeably, although

data protection encompasses the broader goals of business continuity, data

security, information lifecycle management and prevention of malware and computer

viruses.

The importance of data backup

Data backups are among the most important infrastructure components in any

organization because they help guard against data loss. Backups provide a way of

restoring deleted files or recovering a file when it is accidentally overwritten.

In addition, backups are usually an organization's best option for recovering from a

ransomware attack or from a major data loss event, such as a fire in the data center.

What data should be backed up and how frequently?

A backup process is applied to critical databases or related line-of-business

applications. The process is governed by predefined backup policies that specify how

frequently the data is backed up and how many duplicate copies -- known as replicas --

are required, as well as by service-level agreements (SLAs) that stipulate how quickly

data must be restored.

https://searchstorage.techtarget.com/definition/point-in-time-snapshot-PIT-snapshot
https://searchstorage.techtarget.com/definition/information-life-cycle-management
https://searchitchannel.techtarget.com/definition/service-level-agreement

210

Best practices suggest a full data backup should be scheduled to occur at least once a

week, often during weekends or off-business hours. To supplement weekly full backups,

enterprises typically schedule a series of differential or incremental data backup jobs

that back up only the data that has changed since the last full backup took place.

The evolution of backup storage media

Enterprises typically back up key data to dedicated backup disk appliances. Backup

software -- either integrated in the appliances or running on a separate server --

manages the process of copying data to the disk appliances. Backup software handles

processes such as data deduplication that reduce the amount of physical space

required to store data. Backup software also enforces policies that govern how often

specific data is backed up, how many copies are made and where backups are stored.

Before disk became the main backup medium in the early 2000s, most organizations

used magnetic tape drive libraries to store data center backups. Tape is still used today,

but mainly for archived data that does not need to be quickly restored. Some

organizations have adopted the practice of using a removable external drive instead of

a tape, but the basic concept of backing up data to removable media remains the same.

Disk-based backups made it possible for organizations to achieve continuous data

protection. Prior to disk-based backups, organizations would typically create a single

nightly backup. Early on, the nightly backups were all full system backups. As time went

on, the backup files became larger, while the backup windows remained the same size

or even shrank. This forced many organizations to create nightly incremental backups.

Continuous data protection platforms avoid these challenges completely. The systems

perform an initial full backup to disk, and then perform incremental backups every few

minutes as data is created or modified. These types of backups can protect both

structured data -- data stored on a database server -- and unstructured or file data.

In the early days of disk backup, the backup software was designed to run on a

separate server. This software coordinated the backup process and wrote backup data

to a storage array. These systems gained rapid popularity because they acted as online

backups, meaning data could be backed up or restored on demand, without having to

mount a tape.

Although some backup products still use separate backup servers, backup vendors are

increasingly transitioning to integrated data protection appliances. At its simplest, an

integrated data appliance is essentially a file server outfitted with HDDs and backup

https://searchstorage.techtarget.com/definition/data-deduplication
https://searchstorage.techtarget.com/definition/continuous-data-protection
https://searchdatabackup.techtarget.com/buyersguide/Simplify-the-integrated-data-backup-appliance-buying-process

211

software. These plug-and-play data storage devices often include automated features

for monitoring disk capacity, expandable storage and preconfigured tape libraries.

Some backup vendors have also begun offering backup platforms that are based

around the use of hyper-converged systems. These systems consist of collections of

standardized servers that have been clustered together and collectively handle backup-

related processes. One of the main benefits of hyper-converged systems is that they

are easily scalable. Each node within a hyper-converged system contains its own

integrated storage, compute and network resources. Administrators can scale the

organization's backup capacity simply by adding more nodes to the cluster.

Whether hyper-converged or not, most disk-based backup appliances enable copies to

be moved from spinning media to magnetic tape for long-term retention. Magnetic tape

systems are still used because of increasing tape densities and the rise of the Linear

Tape File System.

Early disk backup systems were known as virtual tape libraries (VTLs) because they

included disk that worked the same way as tape drives. That way, backup software

applications developed to write data to tape could treat disk as a physical tape library.

VTLs faded from popular use after backup software vendors optimized their products for

disk instead of tape.

Solid-state drives (SSDs) are rarely used for data backup because of price and

endurance concerns. Some storage vendors include SSDs as a caching or tiering tool

for managing writes with disk-based arrays. This is especially common in hyper-

converged systems. Data is initially cached in flash storage and then written to disk. As

vendors release SSDs with larger capacity than disk drives, flash drives might gain

some use for backup.

Local backup vs. offline backup for primary storage

Modern primary storage systems have evolved to feature stronger native capabilities for

data backup. These features include advanced RAID protection schemes, unlimited

snapshots and tools for replicating snapshots to secondary backup or even tertiary off-

site backup. Despite these advances, primary storage-based backup tends to be more

expensive and lacks the indexing capabilities found in traditional backup products.

Local backups place data copies on external HDDs or magnetic tape systems, typically

housed in or near an on-premises data center. The data is transmitted over a secure

high-bandwidth network connection or corporate intranet.

https://searchdatabackup.techtarget.com/definition/LTFS-Linear-Tape-File-System
https://searchdatabackup.techtarget.com/definition/LTFS-Linear-Tape-File-System
https://searchstorage.techtarget.com/answer/RAID-types-and-benefits-explained

212

One advantage of local backup is the ability to back up data behind a network firewall.

Local backup is also much quicker and provides greater control over who can access

the data.

Offline or cold backup is like local backup, although it is most often associated with

backing up a database. An offline backup incurs downtime since the backup process

occurs while the database is disconnected from its network.

Backup and cloud storage

Off-site backup transmits data copies to a remote location, which can include a

company's secondary data center or leased colocation facility. Increasingly, off-site data

backup equates to subscription-based cloud storage as a service, which provides low-

cost, scalable capacity and eliminates a customer's need to purchase and maintain

backup hardware. Despite its growing popularity, electing backup as a service (BaaS)

requires users to encrypt data and take other steps to safeguard data integrity.

Cloud backup is divided into the following:

 Public cloud storage. Users ship data to a cloud services provider who charges

them a monthly subscription fee based on consumed storage. There are additional

fees for ingress and egress of data. AWS, Google Cloud and Microsoft Azure are

the largest public cloud providers. Smaller managed service providers also host

backups on their clouds or manage customer backups on the large public clouds.

 Private cloud storage. Data is backed up to different servers within a company's

firewall, typically between an on-premises data center and a secondary DR site. For

this reason, private cloud storage is sometimes referred to as internal cloud storage.

 Hybrid cloud storage. A company uses both local and off-site storage. Enterprises

customarily use public cloud storage selectively for data archiving and long-term

retention. They use private storage for local access and backup for faster access to

their most critical data.

Most backup vendors enable local applications to be backed up to a dedicated private

cloud, effectively treating cloud-based data backup as an extension of a customer's

physical data center. When the process enables applications to fail over in case of a

disaster and fail back later, this is known as disaster recovery as a service.

Cloud-to-cloud (C2C) data backup is an alternative approach that has been gaining

momentum. C2C backup protects data on SaaS platforms, such as Salesforce or

https://searchdatabackup.techtarget.com/definition/cold-backup
https://searchdatabackup.techtarget.com/definition/backup-as-a-service-BaaS
https://searchdisasterrecovery.techtarget.com/DRaaS-guide-Benefits-challenges-providers-and-market-trends

213

Microsoft Office 365. This data often exists only in the cloud, but SaaS vendors often

charge large fees to restore data lost due to customer error. C2C backup works by

copying SaaS data to another cloud, from where it can be restored if any data is lost.

Backup storage for PCs and mobile devices

PC users can consider both local backup from a computer's internal hard disk to an

attached external hard drive or removable media, such as a thumb drive.

Another alternative for consumers is to back up data from smartphones and tablets to

personal cloud storage, which is available from vendors such as Box, Carbonite,

Dropbox, Google Drive, Microsoft OneDrive and others. These services are commonly

used to provide a certain capacity for free, giving consumers the option to purchase

additional storage as needed. Unlike enterprise cloud storage as a service, these

consumer-based cloud offerings generally do not provide the level of data security

businesses require.

Backup software and hardware vendors

Vendors that sell backup hardware platforms include Barracuda Networks, Cohesity,

Dell EMC (Data Domain), Drobo, ExaGrid Systems, Hewlett Packard Enterprise, Hitachi

Vantara, IBM, NEC Corp., Oracle StorageTek (tape libraries), Quantum Corp., Rubrik,

Spectra Logic, Unitrends and Veritas NetBackup.

Leading enterprise backup software vendors include Acronis, Arcserve, Asigra,

Commvault, Datto, Dell EMC Data Protection Suite (Avamar and NetWorker), Dell EMC

RecoverPoint replication manager, Druva, Nakivo, Veeam Software and Veritas

Technologies.

The Microsoft Windows Server OS inherently features the Microsoft Resilient File

System (ReFS) to automatically detect and repair corrupted data. While not technically

data backup, Microsoft ReFS is geared to be a preventive measure for safeguarding file

system data against corruption.

VMware vSphere provides a suite of backup tools for data protection, high availability

and replication. The VMware vStorage API for Data Protection (VADP) enables VMware

or supported third-party backup software to safely take full and incremental backups of

VMs. VADP implements backups via hypervisor-based snapshots. As an adjunct to data

backup, VMware vSphere live migration enables VMs to be moved between different

platforms to minimize the effect of a DR event. VMware Virtual Volumes also aid VM

backup.

https://searchdatabackup.techtarget.com/definition/Carbonite
https://searchwindowsserver.techtarget.com/definition/Resilient-File-System-ReFS

214

Backup types defined

 Full backup captures a copy of an entire data set. Although considered to be the

most reliable backup method, performing a full backup is time-consuming and

requires many disks or tapes. Most organizations run full backups only periodically.

 Incremental backup offers an alternative to full backups by backing up only the

data that has changed since the last full backup. The drawback is that a full restore

takes longer if an incremental-based data backup copy is used for recovery.

 Differential backup copies data changed since the last full backup. This enables a

full restore to occur more quickly by requiring only the last full backup and the last

differential backup. For example, if you create a full backup on Monday, the Tuesday

backup would, at that point, be similar to an incremental backup. Wednesday's

backup would then back up the differential that has changed since Monday's full

backup. The downside is that progressive growth of differential backups tends to

adversely affect your backup window. A differential backup spawns a file by

combining an earlier complete copy of it with one or more incremental copies

created later. The assembled file is not a direct copy of any single current or

previously created file, but rather synthesized from the original file and any

subsequent modifications to that file.

 Synthetic full backup is a variation of differential backup. In a synthetic full backup,

the backup server produces an additional full copy, which is based on the original

full backup and data gleaned from incremental copies.

 Incremental-forever backups minimize the backup window while providing faster

recovery access to data. An incremental-forever backup captures the full data set

and then supplements it with incremental backups from that point forward. Backing

up only changed blocks is also known as delta differencing. Full backups of data

sets are typically stored on the backup server, which automates the restoration.

 Reverse-incremental backups are changes made between two instances of a

mirror. Once an initial full backup is taken, each successive incremental backup

applies any changes to the existing full backup. This essentially generates a novel

synthetic full backup copy each time an incremental change is applied, while also

providing reversion to previous full backups.

 Hot backup, or dynamic backup, is applied to data that remains available to users

as the update is in process. This method sidesteps user downtime and productivity

loss. The risk with hot backup is that, if the data is amended while the backup is

underway, the resulting backup copy might not match the final state of the data.

https://searchdatabackup.techtarget.com/definition/incremental-backup
https://searchstorage.techtarget.com/definition/delta-differencing
https://searchdatabackup.techtarget.com/definition/hot-backup

215

Techniques and technologies to complement data backup

 Continuous data protection (CDP) refers to layers of associated technologies

designed to enhance data protection. A CDP-based storage system backs up all

enterprise data whenever a change is made. CDP tools enable multiple copies of

data to be created. Many CDP systems contain a built-in engine that replicates data

from a primary to a secondary backup server and/or tape-based storage. Disk-to-

disk-to-tape backup is a popular architecture for CDP systems.

 Near-continuous CDP takes backup snapshots at set intervals, which are different

from array-based vendor snapshots that are taken each time new data is written to

storage.

 Data reduction lessens your storage footprint. There are two primary methods: data

compression and data deduplication. These methods can be used singly, but

vendors often combine the approaches. Reducing the size of data has implications

on backup windows and restoration times.

 Disk cloning involves copying the contents of a computer's hard drive, saving it as

an image file and transferring it to storage media. Disk cloning can be used for

provisioning, system provisioning, system recovery and rebooting or returning a

system to its original configuration.

 Erasure coding, or forward error correction, evolved as a scalable alternative to

traditional RAID systems. Erasure coding most often is associated with object

storage. RAID stripes data writes across multiple drives, using a parity drive to

ensure redundancy and resilience. The technology breaks data into fragments and

encodes it with other bits of redundant data. These encoded fragments are stored

across different storage media, nodes or geographic locations. The associated

fragments are used to reconstruct corrupted data using a technique known

as oversampling.

 Flat backup is a data protection scheme in which a direct copy of a snapshot is

moved to low-cost storage without the use of traditional backup software. The

original snapshot retains its native format and location; the flat backup replica gets

mounted should the original become unavailable or unusable.

 Mirroring places data files on more than one computer server to ensure it remains

accessible to users. In synchronous mirroring, data is written to local and remote

disk simultaneously. Writes from local storage are not acknowledged until a

confirmation is sent from remote storage, thus ensuring the two sites have an

identical data copy. Conversely, asynchronous local writes are complete before

confirmation is sent from the remote server.

https://searchstorage.techtarget.com/definition/compression
https://searchstorage.techtarget.com/definition/compression
https://searchstorage.techtarget.com/definition/synchronous-mirroring

216

 Replication enables users to select the required number of replicas, or copies, of

data needed to sustain or resume business operations. Data replication copies data

from one location to another, providing an up-to-date copy to hasten DR.

 Recovery-in-place, or instant recovery, enables users to temporarily run a

production application directly from a backup VM instance, thus maintaining data

availability while the primary VM is being restored. Mounting a physical or VM

instance directly on a backup or media server can hasten system-level recovery to

within minutes. Recovery from a mounted image does result in degraded

performance, since backup servers are not sized for production workloads.

 Storage snapshots capture a set of reference markers on disk for a given

database, file or storage volume. Users refer to the markers, or pointers, to restore

data from a selected point in time. Because it derives from an underlying source

volume, an individual storage snapshot is an instance, not a full backup. As such,

snapshots do not protect data against hardware failure.

Snapshots are generally grouped in three categories: changed block, clones and CDP.

Snapshots first appeared as a management tool within a storage array. The advent of

virtualization added hypervisor-based snapshots. Snapshots might also be implemented

by backup software or even via a VM.

Copy data management and file sync and share

Tangentially related to backup is copy data management (CDM). This is software that

provides insight into the multiple data copies an enterprise might create. It enables

discrete groups of users to work from a common data copy. Although technically not a

backup technology, CDM enables companies to efficiently manage data copies by

identifying superfluous or underutilized copies, thus reducing backup storage capacity

and backup windows.

File sync-and-share tools protect data on mobile devices used by employees. These

tools basically copy modified user files between mobile devices. Although this protects

the data files, it does not enable users to roll back to a particular point in time should the

device fail.

How to choose the right backup option

When deciding which type of backup to use, you need to weigh several key

considerations.

https://searchdatabackup.techtarget.com/tip/Data-backup-failure-Five-tips-for-prevention
https://searchdatabackup.techtarget.com/feature/Enterprise-file-sync-and-share-market-evolves-as-adoption-expands

217

Enterprises commonly mix various data backup approaches, as dictated by the primacy

of the data. A backup strategy should be governed by the SLAs that apply to an

application, with respect to data access and availability, recovery time objectives and

recovery point objectives. Choice of backups is also influenced by the versatility of a

backup application, which should guarantee all data is backed up and provides

replication and recovery while establishing efficient backup processes.

Creating a backup policy

Most businesses create a backup policy to govern the methods and types of data

protection they deploy and to ensure critical business data is backed up consistently

and regularly. The backup policy also creates a checklist that IT can monitor and follow

as the department is responsible for protecting all the organization's critical data.

A backup policy should include a schedule of backups. The policies are documented so

others can follow them to back up and recover data if the main backup administrator is

unavailable.

Data retention policies are also often part of a backup policy, especially for companies

in regulated industries. Preset data retention rules can lead to automated deletion or

migration of data to different media after it has been kept for a specific period. Data

retention rules can also be set for individual users, departments and file types.

A backup policy should call for capturing an initial full data backup, along with a series

of differential or incremental data backups of data in between full backups. At least two

full backup copies should be maintained, with at least one located off-site.

Backup policies need to focus on recovery, often more so than the actual backup,

because backed-up data is not much use if it cannot be recovered when needed. And

recovery is key to DR.

Backup policies used to deal mainly with getting data to and from tape. Now, most data

is backed up to disk, and public clouds are often used as backup targets. The process

of moving data to and from disk, cloud and tape is different for each target, so that

should be reflected in the policy. Backup processes can also vary depending on

application -- for instance, a database might require different treatment than a file server

https://searchdatabackup.techtarget.com/tip/The-importance-of-backup-policies
https://www.itgovernance.co.uk/blog/top-tips-for-data-retention-under-the-gdpr
https://www.itgovernance.co.uk/blog/top-tips-for-data-retention-under-the-gdpr

218

Recovery

Recovery is a process of change through which people improve their health and

wellness, live self-directed lives, and strive to reach their full potential. Even people with

severe and chronic substance use disorders can, with help, overcome their illness and

regain health and social function. This is called remission. Being in recovery is when

those positive changes and values become part of a voluntarily adopted lifestyle. While

many people in recovery believe that abstinence from all substance use is a cardinal

feature of a recovery lifestyle, others report that handling negative feelings without using

substances and living a contributive life are more important parts of their recovery.

Types of Recovery Programs

Some types of recovery programs include:

 Recovery-oriented systems of care:

These programs embrace a chronic care management model for severe
substance use disorders, which includes longer-term, outpatient care; recovery
housing; and recovery coaching and management checkups.

 Recovery support services:

These services refer to the collection of community services that can provide
emotional and practical support for continued remission. Components include
mutual aid groups (e.g., 12-step groups), recovery coaching, recovery housing,
recovery management (checkups and telephone case monitoring), recovery
community centers, and recovery-based education (high schools and colleges).

 Social and recreational recovery infrastructures and social media:

These programs make it easier for people in recovery to enjoy activities and
social interaction that do not involve alcohol or drugs (e.g., recovery-specific
cafes and clubhouses, sports leagues, and creative arts programs).

Security

The term "security" refers to a fungible, negotiable financial instrument that holds some

type of monetary value. It represents an ownership position in a publicly-traded

corporation via stock; a creditor relationship with a governmental body or a corporation

represented by owning that entity's bond; or rights to ownership as represented by

an option.

https://www.investopedia.com/terms/f/fungibility.asp
https://www.investopedia.com/terms/f/financialinstrument.asp
https://www.investopedia.com/terms/c/calloption.asp

219

KEY TAKEAWAYS

 Securities are fungible and tradable financial instruments used to raise capital in
public and private markets.

 There are primarily three types of securities: equity—which provides ownership
rights to holders; debt—essentially loans repaid with periodic payments; and
hybrids—which combine aspects of debt and equity.

 Public sales of securities are regulated by the SEC.

 Self-regulatory organizations such as NASD, NFA, and FINRA also play an
important role in regulating derivative securities.

Understanding Securities

Securities can be broadly categorized into two distinct types: equities and debts.
However, some hybrid securities combine elements of both equities and debts.

Equity Securities

An equity security represents ownership interest held by shareholders in an entity (a
company, partnership, or trust), realized in the form of shares of capital stock, which
includes shares of both common and preferred stock.

Holders of equity securities are typically not entitled to regular payments—although
equity securities often do pay out dividends—but they are able to profit from capital
gains when they sell the securities (assuming they've increased in value).

Equity securities do entitle the holder to some control of the company on a pro rata
basis, via voting rights. In the case of bankruptcy, they share only in residual interest
after all obligations have been paid out to creditors. They are sometimes offered
as payment-in-kind.

Debt Securities

A debt security represents borrowed money that must be repaid, with terms that
stipulate the size of the loan, interest rate, and maturity or renewal date.

Debt securities, which include government and corporate bonds, certificates of deposit
(CDs), and collateralized securities (such as CDOs and CMOs), generally entitle their
holder to the regular payment of interest and repayment of principal (regardless of the
issuer's performance), along with any other stipulated contractual rights (which do not
include voting rights).

https://www.investopedia.com/terms/e/equity.asp
https://www.investopedia.com/terms/d/debt.asp
https://www.investopedia.com/terms/c/capitalstock.asp
https://www.investopedia.com/terms/c/capitalgain.asp
https://www.investopedia.com/terms/c/capitalgain.asp
https://www.investopedia.com/terms/p/pro-rata.asp
https://www.investopedia.com/terms/p/pro-rata.asp
https://www.investopedia.com/terms/v/votingright.asp
https://www.investopedia.com/terms/p/paymentinkind.asp
https://www.investopedia.com/terms/m/maturitydate.asp
https://www.investopedia.com/terms/c/cdo.asp
https://www.investopedia.com/terms/c/cmo.asp

220

They are typically issued for a fixed term, at the end of which they can be redeemed by
the issuer. Debt securities can be secured (backed by collateral) or unsecured, and, if
unsecured, may be contractually prioritized over other unsecured, subordinated debt in
the case of a bankruptcy.

Hybrid Securities

Hybrid securities, as the name suggests, combine some of the characteristics of both
debt and equity securities. Examples of hybrid securities include equity
warrants (options issued by the company itself that give shareholders the right to
purchase stock within a certain timeframe and at a specific price), convertible
bonds (bonds that can be converted into shares of common stock in the issuing
company), and preference shares (company stocks whose payments of interest,
dividends, or other returns of capital can be prioritized over those of other stockholders).

creating files

In Windows, the primary way of interacting with files and folders is through the File
Explorer application. (In older versions of Windows, this may be called Windows
Explorer. In Macs, the equivalent would be Finder.)

There are a couple of ways to open File Explorer. The shortcut Win+E will open File
Explorer. It can also be opened by clicking the Start button and typing ―File Explorer‖ or
by right-clicking any folder and selecting Open. By default, File Explorer is pinned to the
task bar (see below), and it can be opened from there.

Some folders already exist in File Explorer, such as Documents, Desktop, and
Downloads. (Documents may be called ―My Documents‖ in older versions of Windows).
You can create more folders or folders within folders to allow for better organization.

To create a folder, right-click, then select New>Folder.

Right-click in File Explorer, then select New>Folder.

https://www.investopedia.com/terms/s/subordinateddebt.asp
https://www.investopedia.com/terms/h/hybridsecurity.asp
https://www.investopedia.com/terms/w/warrant.asp
https://www.investopedia.com/terms/w/warrant.asp
https://www.investopedia.com/terms/c/convertiblebond.asp
https://www.investopedia.com/terms/c/convertiblebond.asp
https://www.investopedia.com/terms/p/preference-shares.asp
https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/1844/2017/05/22231206/fileexplorer-newfolderoption.png

221

In Windows 7, there is a New folder button near the top of the window. In Windows 10,
you can also click the Home tab, then the New Folder button.

Windows 7 New folder button

Windows 10 New folder button

Renaming Files

To rename a file or folder, right-click the file or folder, then select Rename.

storage of Files

If you have ever saved a file on your PC, Mac or laptop, you have already experienced
file storage (or file-level storage). Files are stored as a whole in a selected location on
the hard disk. There are two points that make this method appealing – whether on your
home PC or on corporate servers:

 Files: All data is stored as complete files.

 Hierarchy: Files are located in a folder structure and are accessed through a
path.

In contrast to block storage, a system with file storage does not take the data of a file
apart. The file is stored as a whole and called up again in this form. The hierarchy
results from the multi-level directory system: Files are stored in folders, which in turn
can be located in other folders – and usually are. This sometimes results in
long directory paths that must be known to the computer system or a server. These

https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/1844/2017/05/22213727/fileexplorer-win7-newfolderbutton.png
https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/1844/2017/05/22213743/fileexplorer-win10-newfolderbutton.png
https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/1844/2017/05/22213727/fileexplorer-win7-newfolderbutton.png
https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/1844/2017/05/22213743/fileexplorer-win10-newfolderbutton.png

222

paths are used for navigation, so that the files can be accessed again. The information
is stored in the form of metadata.

File-level storage, other than that on built-in hard disks, is mainly used in two different
variants:

 Network Attached Storage (NAS): An autonomous storage system connected
to a network and available to all participants of the network.

 Direct Attached Storage (DAS): A storage system directly connected to a
computer in the form of an external hard disk.

Different protocols can also be used for communication between the storage and
computer:

 Server Message Block (SMB) for Windows systems

 Network File System (NFS) for Unix and Linux systems

Advantages and disadvantages of file storage

The biggest advantage of file-based storage is probably that anyone can understand the
system. A hierarchical system is familiar not just from IT but in principle this method is
also used in domestic file folders. In general, it is also quite easy to scale a system with
file storage. If more capacity is needed, it is simple to add another storage device (e.g. a
new NAS server) to the network. Multiple network users can also access the memory
and make changes at the same time.

File-level storage is in principle very scalable and also inexpensive, but navigation also
becomes more complex with increasing size. This makes the process of opening
individual files increasingly slower.

Advantages Disadvantages

Low price Slow access times

Easy to use

Easily scalable

https://www.ionos.com/digitalguide/server/know-how/what-is-a-network-attached-storage-nas/
https://www.ionos.com/digitalguide/server/know-how/what-is-a-network-attached-storage-nas/
https://www.ionos.com/digitalguide/server/know-how/server-message-block-smb/

223

File-based storage in practice

File storage in the form of a NAS is used in companies (but also in some home
networks) primarily as a simple file server. File storage is the right choice if you want to
provide (structured or unstructured) files for many users. Thanks to the intuitive system,
all users have equal access to the memory. This storage method is also ideal
for archiving files. Since there is no need for fast access times anyway, files can be
stored for a long time without any problems.

You can also click the name of the file or folder once, wait one second, then click the
name of the file or folder again.

Note that in Windows, a file cannot contain any of the following characters: \ / : * ? " < >
|. This is because those characters have special meaning in Windows. (For example \ is
included in file paths.) If Windows encounters a file or folder with those symbols, it could
potentially misread the file or folder name and cause problems. As a precaution,
Windows will not let you save files or folders with those characters, so don‘t worry about
saving a file with those characters in the name by mistake.

https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/1844/2017/05/24203159/fileexplorer-rename.jpg

224

Macs are less stringent about what characters can be included in a file or folder‘s name;
only the colon (:) cannot be used. However, it is a good practice to avoid using the
Windows-prohibited characters in file names because the file name will be
automatically changed when moved to a Windows computer.

Disk related commands

If you want to... Use this command...

Display a list of spare disks, including
partitioned disks, by owner

storage aggregate show-spare-disks

Display the disk RAID type, current usage,
and RAID group by aggregate

storage aggregate show-status

Display the RAID type, current usage,
aggregate, and RAID group, including
spares, for physical disks

storage disk show -raid

Display a list of failed disks nstorage disk show -broken

Display the pre-cluster (nodescope) drive
name for a disk

storage disk show -primary-
paths (advanced)

Illuminate the LED for a particular disk or
shelf

storage disk set-led

225

If you want to... Use this command...

Display the checksum type for a specific
disk

storage disk show -fields checksum-
compatibility

Display the checksum type for all spare
disks

storage disk show -fields checksum-
compatibility -container-type spare

Display disk connectivity and placement
information

storage disk show -fields disk,primary-
port,secondary-name,secondary-
port,shelf,bay

Display the pre-cluster disk names for
specific disks

storage disk show -disk -fields
diskpathnames

Display the list of disks in the maintenance
center

storage disk show -maintenance

Display SSD wear life storage disk show -ssd-wear

Unpartition a disk system node run -node local -command
disk unpartition

226

If you want to... Use this command...

Unpartition a shared disk storage disk unpartition

(available at diagnostic level)

Zero all non-zeroed disks storage disk zerospares

Stop an ongoing sanitization process on
one or more specified disks

disk sanitize abort disk_list

Display storage encryption disk information storage encryption disk show

Retrieve authentication keys from all linked
key management servers

security key-manager restore

227

Unit-V

Different tools and Debugger

System development tools

In addition to understanding business operations, systems analyst must know how to
use a variety of techniques, such as modeling, prototyping, and computer-aides
systems engineering tools to plan in a team environment, where input from users,
managers, and IT staff contributes to the system design.

MODELING

Modeling produces a graphical representation of a concept or process that systems
developers can analyze, test, and modify. A system analyst can describe and simplify
an information system by using a set of business, data, object, network, and process
models.

A business model, or requirements model, describes the information that a system
must provide. A data model describes data structure and design. An object
model describes objects, which combine data and processes. A network model
describes the design and protocols of telecommunications links. A process
model describes the logic that programmers use to write code modules. Although the
models might appear to overlap, they actually work together to describe the same
environment from different points of view.

PROTOTYPING

Prototyping tests system concepts and provides an opportunity to examine input,
output, and user interfaces before final decisions are made. A prototype is an early
working version of an information system. Just as an aircraft manufacturer test a new
design in a wind tunnel, systems analysts construct and study information systems
prototypes. A prototype can serve as an initial model that is used as benchmark to
evaluate the finished system, or the prototype itself can develop into the final version of
the system. Either way, prototyping speeds up the development process significantly.
A possible disadvantage of prototyping is that important decisions might be made too
early, before business or IT issues are understood thoroughly. A prototype based on
careful fact finding and modeling techniques, however can be an extremely valuable
tool.

COMPUTER-AIDED SYSTEM ENGINEERING (CASE) TOOLS

 Computer-aided systems engineering (CASE), also called computer-aided
software engineering, is a technique that uses powerful software, called CASE Tools,
to help system s analyst‘s develop and maintain information systems. CASE tools

228

provide an over all framework for systems development and support a wide variety of
design methodologies, including structured analysis and object-oriented analysis.
Because CASE tools make it easier to build an information system, they boost it
productivity and improved the quality of the finished product.
In addition to traditional CASE tools system developers often use project management
tools, such as Microsoft Project, and special –purpose charting tools, such as Microsoft
Visio, which is shown in figure 1-23. a system analyst‘s can use Visio to create many
different types of diagrams, including block diagrams. Building plans, forms and charts,
maps, network diagrams, and organization charts, Visio is described in more detail in
Part 2 of the Systems Analyst‘s Toolkit.

SYSTEMS DEVELOPMENT METHODS

There are various methods for developing computer-based information
systems. Structured analysis is the most popular method, but a newer strategy
called object-oriented analysis and design also is used widely. Each method offers
many variations. Some organizations develop their own approaches or adopt methods
offered by software suppliers, CASE tool vendors, or consultants. Most IT experts agree
that no single, best system development strategy exists. Instead, a systems analyst
should understand the alternative methodologies and their strengths and weaknesses.

STRUCTURED ANALYSIS

Structured analysis is a traditional systems development technique that is time-tested
and easy to understand. Structured analysis uses a series of phases, called
the systems development cycle (SDLC), to plan, analyze, design, implement and
support an information system. Although structured analysis evolved when most
systems were based on mainframe processing, it remains a dominant systems
development method.
Structured analysis uses a set of processes models to describe a system graphically.
Because it focuses on processes that transform data in useful information, structured
analysis is called a process-centered technique. In addition to modeling the
processes structured analysis includes data organization and structure, relational
database design and user interfaces issue.
Process modeling identifies the data flowing into a process, the business rules that
transform the data, and the resulting output data flow.

OBJECT –ORIENTED ANALYSIS

Where as structured analysis treats processes and data as separate
components, object-oriented analysis (O-O) components data and the process that
act on the data into things called objects. System‘s analyst use O-O to model real-
world business process and operation. The result is a set of software objects that
represent actual people, things, transaction, and events. Using an O-O programming
language, a programmer then writes the code that creates the objects.
An object is a member of a class, which is a collection of similar objects. Objects
possess characteristic called properties, which the objects inherits from its class or
possess on its own.

229

JOINT APPLICATION DEVELOPMENT AND RAPID APPLICATION DEVELOPMENT

In the past, IT departments sometimes developed systems without sufficient input from
users. Not surprisingly, users often were unhappy with the finished product. Over time,
many companies discovered that systems development teams composed of IT staff,
users, and managers could complete their work more rapidly an produce better results.
Two methodologies became popular: joint application development (JAD) and rapid
application development (RAD). Both JAD and RAD use teams composed of users,
managers, and IT staff. The difference is that JAD focuses on team-based fact-finding,
which is only one phase of the development process, while RAD is more like a
compressed version of the entire process. JAD and RAD are described in more detail in
Chapter 3.

OTHER DEVELOPMENT STRATEGIES

In addition to structured analysis and O-O methodologies, you might encounter systems
development techniques. For example Microsoft Offers an approach called
Microsoft Solution Framework (MSF), which document the experience of its own IT
teams.
Using an MSF, systems analysts design a series of models, including a risk
management model; a team model, and a process model, among others. Each model
has a specific purpose and output that contributes to the overall design of the system.
Although the Microsoft processes differ from the SDLC phase-oriented
approach, MSF developers perform the same kind of planning, ask the same kinds of
fact-finding questions, deal with the same kinds of design and implementation issues,
and resolve the same kinds of problems. MSF uses O-O analysis and design concepts,
but also examines a broader business and organizational context that surrounds the
development of an information system.

Lint

Linting is the automated checking of your source code for programmatic and stylistic
errors. This is done by using a lint tool (otherwise known as linter). A lint tool is a basic
static code analyzer.

The term linting originally comes from a Unix utility for C. There are many code linters
available for various programming languages today.

Why Is Linting Important?

Linting is important to reduce errors and improve the overall quality of your code. Using
lint tools can help you accelerate development and reduce costs by finding errors
earlier.

Learn Why Linting Is Important for Software Quality >>

https://www.perforce.com/resources/guide-to-software-quality

230

How do Lint Tools Work?

Here‘s how lint tools are typically fit into the development process.

1. Write the code.

2. Compile it.

3. Analyze it with the linter.

4. Review the bugs identified by the tool.

5. Make changes to the code to resolve the bugs.

6. Link modules once the code is clean.

7. Analyze them with the linter.

8. Do manual code reviews.

Lint programming is a type of automated check. It should happen early in development,
before code reviews and testing. That‘s because automated code checks make the
code review and test processes more efficient. And they free your developers to focus
on the right things.

Make

make The purpose of the make utility is to determine automatically which pieces of a
large program need to be recompiled, and issue the commands to recompile them. you
can use make with any programming language whose compiler can be run with a shell
command. In fact, make is not limited to programs. You can use it to describe any task
where some files must be updated automatically from others whenever the others
change.
To prepare to use make, you must write a file called the makefile that describes the
relationships among files in your program, and the states the commands for updating
each file. In a program, typically the executable file is updated from object files, which
are in turn made by compiling source files.

Options

Tag Description

-b, -m
prints online help and exitThese options are ignored for
compatibility with other versions of make..

https://www.perforce.com/blog/qac/9-best-practices-code-reviews

231

-B, --always-make Unconditionally make all targets.

-C dir, --directory=dir

Change to directory dir before reading the makefiles or doing
anything else. If multiple -C options are specified, each is
interpreted relative to the previous one: -C / -C etc is
equivalent to -C /etc. This is typically used with recursive
invocations of make.

-d

Print debugging information in addition to normal processing.
The debugging information says which files are being
considered for remaking, which file-times are being compared
and with what results, which files actually need to be remade,
which implicit rules are considered and which are applied---
everything interesting about how make decides what to do.

--debug[=FLAGS]

Print debugging information in addition to normal processing.
If the FLAGS are omitted, then the behavior is the same as if -
d was specified. FLAGS may be a for all debugging output
(same as using -d), b for basic debugging, v for more verbose
basic debugging, i for showing implicit rules, j for details on
invocation of commands, and m for debugging while remaking
makefiles.

-e,--environment-
overrides

Give variables taken from the environment precedence over
variables from makefiles.

+-f file, --file=file, --
makefile=FILE

Use file as a makefile.

-i, --ignore-errors Ignore all errors in commands executed to remake files.

-I dir, --include-dir=dir

Specifies a directory dir to search for included makefiles. If
several -I options are used to specify several directories, the
directories are searched in the order specified. Unlike the
arguments to other flags of make, directories given with -I
flags may come directly after the flag: -Idir is allowed, as well
as -I dir. This syntax is allowed for compatibility with the C
preprocessor's -I flag.

-j [jobs], --jobs[=jobs]

Specifies the number of jobs (commands) to run
simultaneously. If there is more than one -j option, the last one
is effective. If the -j option is given without an argument, make
will not limit the number of jobs that can run simultaneously.

-k, --keep-going

Continue as much as possible after an error. While the target
that failed, and those that depend on it, cannot be remade, the
other dependencies of these targets can be processed all the
same.

232

-l [load], --load-
average[=load]

Specifies that no new jobs (commands) should be started if
there are others jobs running and the load average is at least
load (a floating-point number). With no argument, removes a
previous load limit.

-L, --check-symlink-
times

Use the latest mtime between symlinks and target.

-n, --just-print, --dry-
run, --recon

Print the commands that would be executed, but do not
execute them.

-o file, --old-file=file, --
assume-old=file

Do not remake the file file even if it is older than its
dependencies, and do not remake anything on account of
changes in file. Essentially the file is treated as very old and
its rules are ignored.

-p, --print-data-base

Print the data base (rules and variable values) that results
from reading the makefiles; then execute as usual or as
otherwise specified. This also prints the version information
given by the -v switch.

-q, --question
''Question mode''. Do not run any commands, or print
anything; just return an exit status that is zero if the specified
targets are already up to date, nonzero otherwise.

-r, --no-builtin-rules
Eliminate use of the built-in implicit rules. Also clear out the
default list of suffixes for suffix rules.

-R, --no-builtin-
variables

Don't define any built-in variables.

-s, --silent, --quiet
Silent operation; do not print the commands as they are
executed.

-S, --no-keep-going, --
stop

Cancel the effect of the -k option. This is never necessary
except in a recursive make where -k might be inherited from
the top-level make via MAKEFLAGS or if you set -k in
MAKEFLAGS in your environment.

-t, --touch

Touch files (mark them up to date without really changing
them) instead of running their commands. This is used to
pretend that the commands were done, in order to fool future
invocations of make.

-v, --version
Print the version of the make program plus a copyright, a list
of authors and a notice that there is no warranty.

-w, --print-directory
Print a message containing the working directory before and
after other processing. This may be useful for tracking down

233

errors from complicated nests of recursive make commands.

--no-print-directory Turn off -w, even if it was turned on implicitly.

-W file, --what-if=file, -
-new-file=file, --
assume-new=file

Pretend that the target file has just been modified. When used
with the -n flag, this shows you what would happen if you
were to modify that file. Without -n, it is almost the same as
running a touch command on the given file before running
make, except that the modification time is changed only in the
imagination of make.

--warn-undefined-
variables

Warn when an undefined variable is referenced.

EXAMPLES

Example-1:

To Build your programs:

$ make

output:

 gcc -c -Wall test1.c
 gcc -c -Wall test2.c
 gcc -Wall test1.o test2.o -o test

SCCS (source code control system)

SCCS has been around a while and is mentioned in most UNIX/ULTRIX books. It's a
method of managing revisions of a program. When a new version of a file (the sccs
jargon for this is a delta) is put into SCCS form only the differences between it and the
older version is stored, for reasons of economy. The commands can be used directly or
via the sccs preprocessor. I suggest that you use the preprocessor; you use this by
prefacing the command with 'sccs'. The preprocessor expects that an SCCS directory is
available within the directory that contains your files and that this directory also contains
the SCCS files. The SCCS directory is owned by sccs, providing an additional level of
security, so root will have to make it for you. The files in the SCCS directory are called
s-files in the documentation; their names begin with "s." To create an s.file from scratch,
use
 sccs create filename
or
 sccs admin -ifilename filename
This doesn't remove the original file.

When you initially sccs a file, you can only annotate the delta by using

234

 sccs admin -imain.c -y"First Release" main.c
With subsequent modifications you are prompted for a comment if you don't use the -y
option.

You can use the ksh shell script below to sccs all your files at once.

 for file in (*.[.ch])
 do
 sccs admin -i$file $file
 done
An SID is an identification number for a modification (a `delta'). The first delta is usually
1.1 and succeeding versions will be 1.2, 1.3 etc unless you ask for branches to be
made. To prepare an s-file for branching do
 sccs admin -fb filename.

 sccs admin -ifilename -fb filename.
creates an s-file that is ready to accept branches straight away.

For a full list of commands and options, see man sccs etc. Here are some examples to
get you started

To make a new delta,

 sccs edit filename
This changes SCCS/s.filename to SCCS/p.filename to show that the file is out for
editing, and pulls the file out. Any file with the same name is overwritten. If you have the
new version of the file already in the directory and don't want to rewrite it, do
 sccs edit -g filename
Then when you have edited it, do
 sccs delta filename
You will be prompted to add a comment to the delta.
 sccs delta `sccs tell`
deltas all out-for-edit versions To get out a particular version use
 sccs get -r[revision] filename
To correct a delta (not make a new one)
 sccs fix -r[rev] filename
then edit and do
 sccs delta filename
NB: when you fix 1.2.1.1 it get delta'd back as 1.3. A bug.

To remove a delta,

 sccs rmdel -r[rev] filename
To make a branch use the `-b' option.
 sccs edit -r1.2 -b filename

235

will create a branch from 1.2. When you have edited the file and do a delta, the delta will
have SID 1.2.1.1.

To compare the file out for edit with the latest SCCS trunk version, try

 sccs diffs filename
 sccs sccsdiff -r1.1 -r1.2
This will compare the two SCCS versions. To get information on the deltas of a file, type
 sccs prs filename
You'll get an output something like:

D 1.3 86/06/06 16:59:47 root 3 2 00011/00001/00101
MRs:
COMMENTS:
added header file dependancies

D 1.2 86/02/11 12:06:27 root 2 1 00001/00012/00101
MRs:
COMMENTS:
CUED mods. Deleted sccs stuff.

D 1.1 86/02/11 10:42:02 root 1 0 00113/00000/00000
MRs:
COMMENTS:
Initial revision

The numbers on the far right tell you
 lines_added/lines_removed/lines_unchanged
 sccs edit -r2 SCCS
changes release number of all files

Notes:-

1. don't go mad on branches; sccs has a bias against them. E.g. For commands
which have an -r[rev] option the default is the most recent trunk rev, not the most
recent branch.

2. When you create an sccs file it will come up with a warning "No id keywords
(cm7)". Don't worry about this.

3. See the SCCS User's Guide, in HP-UX Concepts and Tutorials: Programming
Environment for more details. Typing man -k sccs gives you a list of related
commands.

236

Language development tools: YACC, LEX, M4

YACC

A parser generator is a program that takes as input a specification of a syntax, and
produces as output a procedure for recognizing that language. Historically, they are also
called compiler-compilers.

YACC (yet another compiler-compiler) is an LALR(1) (LookAhead, Left-to-right, Rightmost
derivation producer with 1 lookahead token) parser generator. YACC was originally
designed for being complemented by Lex.

Input File:

YACC input file is divided in three parts.

/* definitions */

%%

/* rules */

....

%%

/* auxiliary routines */

....

Input File: Definition Part:

 The definition part includes information about the tokens used in the syntax

definition:

 %token NUMBER

%token ID

 Yacc automatically assigns numbers for tokens, but it can be overridden by
%token NUMBER 621

 Yacc also recognizes single characters as tokens. Therefore, assigned token
numbers should no overlap ASCII codes.

https://www.geeksforgeeks.org/parsing-set-3-slr-clr-and-lalr-parsers/

237

 The definition part can include C code external to the definition of the parser and
variable declarations, within %{ and %} in the first column.

 It can also include the specification of the starting symbol in the grammar:
%start nonterminal

Input File: Rule Part:

 r every function needed in rules part.

 It can also contain the main() function definition if the parser is going to be run as a

program.

 The main() function must call the function yyparse().

Input File:

 If yylex() is not defined in the auxiliary routines sections, then it should be included:

#include "lex.yy.c"

 YACC input file generally finishes with:
 .y

Output Files:

 The output of YACC is a file named y.tab.c

 If it contains the main() definition, it must be compiled to be executable.

 Otherwise, the code can be an external function definition for the function int

yyparse()

 If called with the –d option in the command line, Yacc produces as output a header
file y.tab.h with all its specific definition (particularly important are token definitions
to be included, for example, in a Lex input file).

 If called with the –v option, Yacc produces as output a file y.output containing a
textual description of the LALR(1) parsing table used by the parser. This is useful
for tracking down how the parser solves conflicts.

Example:

Yacc File (.y)
filter_none
brightness_4

%{
 #include <ctype.h>

238

 #include <stdio.h>
 #define YYSTYPE double /* double type for yacc stack */
%}

%%
 Lines : Lines S '\n' { printf("OK \n"); }
 | S '\n‘
 | error '\n' {yyerror("Error: reenter last line:");
 yyerrok; };
 S : '(' S ')‘
 | '[' S ']‘
 | /* empty */ ;
%%

#include "lex.yy.c"

void yyerror(char * s)
/* yacc error handler */
{
 fprintf (stderr, "%s\n", s);
}

int main(void)
 {
 return yyparse();
 }

Lex File (.l)
filter_none
brightness_4

%{
%}

%%
[\t] { /* skip blanks and tabs */ }
\n|. { return yytext[0]; }
%%

For Compiling YACC Program:

1. Write lex program in a file file.l and yacc in a file file.y

2. Open Terminal and Navigate to the Directory where you have saved the files.

3. type lex file.l

239

4. type yacc file.y

5. type cc lex.yy.c y.tab.h –ll

6. type ./a.out

LEX

o Lex is a program that generates lexical analyzer. It is used with YACC parser

generator.

o The lexical analyzer is a program that transforms an input stream into a

sequence of tokens.

o It reads the input stream and produces the source code as output through

implementing the lexical analyzer in the C program.

The function of Lex is as follows:

o Firstly lexical analyzer creates a program lex.1 in the Lex language. Then Lex

compiler runs the lex.1 program and produces a C program lex.yy.c.

o Finally C compiler runs the lex.yy.c program and produces an object program

a.out.

o a.out is lexical analyzer that transforms an input stream into a sequence of

tokens.

240

Lex file format

A Lex program is separated into three sections by %% delimiters. The formal of Lex
source is as follows:

1. { definitions }

2. %%

3. { rules }

4. %%

5. { user subroutines }

Definitions include declarations of constant, variable and regular definitions.

Rules define the statement of form p1 {action1} p2 {action2}....pn {action}.

Where pi describes the regular expression and action1 describes the actions what
action the lexical analyzer should take when pattern pi matches a lexeme.

241

M4

GNU M4 is an implementation of the traditional Unix macro processor. It is mostly SVR4

compatible although it has some extensions (for example, handling more than 9

positional parameters to macros). GNU M4 also has built-in functions for including files,

running shell commands, doing arithmetic, etc.

GNU M4 is a macro processor in the sense that it copies its input to the output

expanding macros as it goes. Macros are either builtin or user-defined and can take any

number of arguments. Besides just doing macro expansion, m4 has builtin functions for

including named files, running UNIX commands, doing integer arithmetic, manipulating

text in various ways, recursion etc... m4 can be used either as a front-end to a compiler

or as a macro processor in its own right.

One of the biggest users of GNU M4 is the GNU Autoconf project.

Downloading M4

The latest stable version is 1.4.18, and can be found on http://ftp.gnu.org/gnu/m4/ [via

http] and ftp://ftp.gnu.org/gnu/m4/ [via FTP]. It can also be found on one of our FTP

mirrors. The stable development branch can also be checked out from git, using either

of:

git clone git://git.sv.gnu.org/m4

git clone http://git.savannah.gnu.org/r/m4.git

followed by:

git checkout -b branch-1.4 origin/branch-1.4

Documentation

GNU M4 documentation can be found in several formats

at http://www.gnu.org/software/m4/manual/. You may also find more information about

GNU M4 by looking at your local documentation. For example, you might try looking in

/usr/share/doc/m4/, or use info m4 at the shell prompt.

https://www.gnu.org/software/autoconf/autoconf.html
http://ftp.gnu.org/gnu/m4/
ftp://ftp.gnu.org/gnu/m4/
https://www.gnu.org/order/ftp.html
https://www.gnu.org/order/ftp.html
https://www.gnu.org/software/m4/manual/index.html

242

Mailing Lists

GNU M4 has several mailing lists: <bug-m4@gnu.org>, <m4-discuss@gnu.org>, <m4-

patches@gnu.org>, and <m4-announce@gnu.org>. Archives of these lists are

available; see the details of each list for a link to the archives.

You can subscribe to any GNU mailing list via the web as described below. Or you can

send an empty mail with a Subject: header line of just "subscribe" to the relevant -

request list. For example, to subscribe yourself to the bug-m4 list, you would send mail

to <bug-m4-request@gnu.org> with no body and a Subject: header line of just

"subscribe".

It has been necessary to moderate the GNU M4 mailing lists to prevent the flood of

spam. Postings to the lists are held for release by the list moderator. Sometimes the

moderators are unavailable for brief periods of time. Please be patient when posting. If

you don't see the message in the list archive then it did not get posted.

Announcements

The low-volume mailing list m4-announce contains all announcements about GNU M4.

Important announcments about M4 and most other GNU Software are also made

on <info-gnu@gnu.org>.

Tracking Development

The moderate-volume mailing list bug-m4 tracks all bug reports. For more information

on submitting bugs, please see the section Report a Bug below.

The moderate-volume mailing list m4-patches is used to propose and track all

significant patches. GNU M4 is being actively developed, and version 2.0 will have

many new features, such as better input control, multiple precision arithmetic and

loadable modules. More information about the future of GNU M4 is

at http://savannah.gnu.org/projects/m4/. You can track development in git, using:

git clone git://git.sv.gnu.org/m4

git clone http://git.savannah.gnu.org/r/m4.git

mailto:bug-m4@gnu.org
mailto:m4-discuss@gnu.org
mailto:m4-patches@gnu.org
mailto:m4-patches@gnu.org
mailto:m4-announce@gnu.org
mailto:bug-m4-request@gnu.org
http://lists.gnu.org/mailman/listinfo/m4-announce
http://lists.gnu.org/mailman/listinfo/info-gnu
http://lists.gnu.org/mailman/listinfo/bug-m4
https://www.gnu.org/software/m4/#bug
http://lists.gnu.org/mailman/listinfo/m4-patches
http://savannah.gnu.org/projects/m4/

243

You can also view the git tree on the web.

Alternatively, there is a read-only CVS mirror here:

cvs -d :pserver:anonymous@pserver.git.sv.gnu.org:/m4.git \

 co -d m4 HEAD

Please note that we do not suggest using test versions of GNU M4 for production use.

One feature of the 2.0 release will be translations; you can track the progress of the

i18n team at http://translationproject.org/domain/m4.html.

Request an Enhancement

If you would like any new feature to be included in future versions of GNU M4, please

send a request to m4-discuss. This list tends to have a moderate volume of traffic.

Please remember that development of GNU M4 is a volunteer effort, and you can also

contribute to its development. For information about contributing to the GNU Project,

please read How to help GNU.

Report a Bug

If you think you have found a bug in GNU M4, then please send as complete a report as

possible to <bug-m4@gnu.org>. This includes what platform and compiler you used to

build M4, what version of M4 you are attempting to use, and transcripts of any error

messages or behavior that was contrary to your expectations. Disagreements between

the manual and the code are also bugs.

Text formatting tools: nroff, troff, tbl, eqn, pic

Nroff

nroff and troff are UNIX commands (and the utilities that support them) for formatting
text files for printing.... Formats text for printing on typewriter-like devices and line
printers.

http://git.sv.gnu.org/gitweb/?p=m4.git
http://translationproject.org/domain/m4.html
http://lists.gnu.org/mailman/listinfo/m4-discuss
https://www.gnu.org/help/
mailto:bug-m4@gnu.org

244

Syntax

nroff [-e] [-h] [-i] [-q] [-z] [-o List] [-n Number] [-s Number] [-r ANumber] [-
u Number] [-T Name] [-man] [-me] [-mm] [-mptx] [-ms] [File ... | -]

Description

The nroff command reads one or more files for printing on typewriter-like devices and
line printers. If no file is specified or the - (minus sign) flag is specified as the last
parameter, standard input is read by default. The File variable specifies files to be
printed on a typewriter-like device by the nroff command. The default is standard input.

The col command may be required to postprocess nroff command output in certain
cases.

Flags

-e Produces equally spaced words in adjusted lines, using the full resolution of
a particular terminal.

-h Uses output tabs during horizontal spacing to speed output and reduce the
output character count. Tab settings are assumed to be every eight nominal
character widths.

-i Reads standard input after reading all specified files.

-man Selects the man macro processing package.

-me Selects the me macro processing package.

-mm Selects the mm macro processing package.

-mptx Selects the mptx macro processing package.

-ms Selects the ms macro processing package.

-n Number Assigns the specified number to the first printed page.

-o List Prints only those pages specified by the List variable, which consists of a
comma-separated list of page numbers and ranges, as follows:

 A range of Start-Stop means print pages Start through Stop. For
example, 9-15 prints pages 9 through 15.

 An initial -Stop means print from the beginning to page Stop.
 A final Start- means print from page Start to the end.
 A combination of page numbers and ranges prints the specified

pages. For example, -3, 6-8,10,12- prints the beginning through
page 3, pages 6 through 8, page 10, and page 12 to the end.

Note: When the -oList flag is used in a pipeline (as with one or more
of the eqn or tbl commands) you may receive a broken
pipe message if the last page in the document is not specified in
the List parameter. This broken pipe message is not an indication of

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/figures/cmds4156.jpg
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A133Z9263a
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A133Z9263b
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A133Z92625
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A133Z92626
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A133Z92627
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A133Z92620
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A133Z92622
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A133Z92623
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A133Z92624
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A133Z9263c
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A133Z9263c
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#u1N52e0holl
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#aeI230jani
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#keI230jani
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#weI50jani
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A133Z9260f
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A7fI170jani
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#piK480cpen
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds1/col.htm#A133Z96dd
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A151Z92bf3
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A362V06f
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#K9f71f0holl
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A5V16
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#Fu92160holl

245

any problem and can be ignored.

-q Calls the simultaneous input/output mode of the .rd request.

-r ANumber Sets register A to the specified number. The value specified by
the A variable must have a one-character ASCII name.

-s Number Stops every specified number of pages (the default is 1).
The nroff command halts every specified number of pages to allow paper
loading or changing, then resumes upon receipt of a linefeed or new-line
character. This flag does not work in pipelines (for example, with
the mm command). When the nroff command halts between pages, an
ASCII BEL character is sent to the workstation.

-T Name Prepares the output for the specified printing device. Typewriter-like
devices and line printers use the following Name variables for AIX
international extended character sets, as well as English-language
character sets, digits, and symbols:
hplj

Hewlett-Packard LaserJet II and other models in the same series of
printers.

ibm3812
3812 Pageprinter II.

ibm3816
3816 Pageprinter.

ibm4019
4019 LaserPrinter.

Note: The 4019 and the HP Laser Jet II printer both have nonprintable
areas at the top and bottom of a page. If a file is targeted for these printers,
be sure to define top and bottom margins (for example, by formatting with
the -mm flag) so that all output can be positioned within the printable page.

37
Teletype Model 37 terminal (default) for terminal viewing only. This
device does not support extended characters that are inputted by the
\[N] form. Inputting Extended Single-Byte Characters provides more
information.

lp
Generic name for printers that can underline and tab. All text sent to
the lp value using reverse linefeeds (for example, text that includes
tables) must be processed with the col command. This device does
not support extended characters that are inputted by the \[N] form.
Inputting Extended Single-Byte Characters provides more
information.

ppds
Generic name for printers that support the personal printer data
streams such as the Quietwriter III, Quickwriter, and Proprinters.

ibm5575
5575 Kanji Printer.

ibm5577

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#VvAA10gsc

246

5577 Kanji Printer.
Note: For completeness of the text formatting system, the following
devices are shipped as is from the AT&T Distribution center. No
support is provided for these tables.

2631
Hewlett-Packard 2631 printer in regular mode.

2631-c
Hewlett-Packard 2631 printer in compressed mode.

2631-e
Hewlett-Packard 2631 printer in expanded mode.

300
DASI-300 printer.

300-12
DASI-300 terminal set to 12 characters per inch.

382
DTC-382.

4000a
Trendata 4000a terninal (4000A).

450
DASI-450 (Diablo Hyterm) printer.

450-12
DASI-450 terminal set to 12 characters per inch.

832
Anderson Jacobson 832 terminal.

8510
C.ITOH printer.

tn300
GE Terminet 300 terminal.

X
Printers equipped with a TX print train.

300s
DASI-300s printer (300S).

300s-12
DASI-300s printer set to 12 characters per inch (300S-12).

-u Number Sets the bold factor (number of character overstrokes) for the third font
position (bold) to the specified number, or to 0 if the Number variable is
missing.

-z Prints only messages generated by .tm (workstation message) requests.
Note: See the article Macro Packages for Formatting Tools in
the troff command for more inforamtion on the macros.

- Forces input to be read from standard input.

Files

/usr/share/lib/tmac/tmac.* Contains pointers to standard macro files.

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#aQAA10gsc
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#JyJqj259mart
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#AC15370holl

247

/usr/share/lib/macros/* Contains standard macro files.

/usr/share/lib/nterm/* Contains the terminal driving tables for
the nroff command.

/usr/share/lib/pub/terminals Contains a list of supported terminals.

Troff

Formats text for printing on typesetting devices.

Syntax

troff [-a] [-i] [-q] [-z] [-F Directory] [-n Number] [-o List] [-r ANumber] [-
s Number] [-T Name] [-mm | -me | -mptx | -ms | -man | -mv] [-M Media] [File ... | -
]

Description

The troff command reads one or more files and formats the text for printing on a
phototypesetter or comparable device. A postprocessor is then required to post process
the output of the troff command to the target device. See the accompanying example.

If no file is specified or the - (minus) flag is not the last parameter, standard input is read
by default.

For the 3812, 3816, and Hewlett-Packard LaserJet Series II printer, the default fonts are
the native fonts for the printer. Additional fonts also are available for these printers,
which may be loaded through the use of the troff .fp directive. These fonts are stored
on the host in the directory /usr/lib/font/devPrinter/bitmaps, and downloaded to the
printer as necessary.

Typefaces

Three different typefaces are provided in four styles. The following chart shows the
relationship between typeface, style, and the name that the troff command uses to
access the font.

Note: The fonts in this set are based on the Computer Modern letter forms developed
by Donald E Knuth. (Refer to Knuth, Donald: Computer Modern Typefaces. Addison-
Wesley, 1986.)

Typeface Regular Italic Bold Italic
Roman cr cR Cr CR
Sans Serif cs cS Cs CS
Typewriter ct cT Ct CT

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/figures/X4Lwhc9kevi.jpg
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A133Z9268a
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A133Z92687
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A133Z92688
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A133Z92689
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A88JD2d0gsc
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A133Z92683
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A2WD9270gsc
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#ngD9270gsc
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A133Z92684
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A133Z92684
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A6jD9210gsc
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#wbIb0jani
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#kbIb0jani
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#BqN230jani
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A4cI230jani
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#TbI130jani
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#LcI1d0jani
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#eQKwh157kevi
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A133Z9264b
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A133Z9264b
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A149A1aec4

248

troff special sp

These fonts are all provided in the standard 15 troff sizes: 6, 7, 8, 9, 10, 11, 12, 14, 16,
28, 20, 22, 24, 28, and 36 points.

For example, .fp 1 Cr loads the Roman bold font into position 1.

Note: The .tl request cannot be used before the first break-producing request in the
input to the troff command.

Flags

-a Sends a printable ASCII approximation of the results to standard output.

-FDirectory Accesses font information from the Directory/devName directory instead of

the default /usr/lib/font/devName directory (where Name is specified by

the -T flag).

-i Reads standard input after there are no more files.

-M Media Specifies a paper size in order to determine the amount of imageable area

on the paper. Valid values for the Media variable are:

A4 Specifies a paper size of 8.3 X 11.7 inches (210 X 297 mm).

A5 Specifies a paper size of 5.83 X 8.27 inches (148 X 210 mm).

B5 Specifies a paper size of 6.9 X 9.8 inches (176 X 250 mm).

EXEC Specifies a paper size of 7.25 X 10.5 inches (184.2 X 266.7 mm).

LEGAL Specifies a paper size of 8.5 X 14 inches (215.9 X 355.6 mm).

LETTER Specifies a paper size of 8.5 X 11 inches (215.9 X 279.4 mm).

This is the default value.

Note: The Media variable is not case-sensitive.

-nNumber Numbers the first printed page with the value specified by

the Number variable.

-oList Prints only pages specified by the List variable, which consists of a comma-

separated list of page numbers and ranges:

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#wsAA290gsc

249

 A range of Start-Stop means print pages Start through Stop. For
example: 9-15 prints pages 9 through 15.

 An initial -Stop means print from the beginning to page Stop.

 A final Start- means print from pageStart to the end.

 A combination of page numbers and ranges prints the specified
pages. For example: -3,6-8,10,12- prints from the beginning through
page 3, pages 6 through 8, page 10, and page 12 to the end.

Note: When this flag is used in a pipeline (for example, with one or
more of the pic, eqn, or tbl commands), you may receive a broken
pipe message if the last page in the document is not specified in
the List variable. This broken pipe message is not an indication of
any problem and can be ignored.

-q Calls the simultaneous input and output mode of the .rd request.

-rANumber Sets the register specified by the A variable to the specified number.

The A variable value must have a one-character ASCII name.

-sNumber Generates output to make the typesetter stop every specified number of

pages.

-TName Prepares the output for the specified printing device. Phototypesetters or

comparable printing devices use the following Name variables for AIX

international extended characters. The default is ibm3816.

Note: You get a message that reads bad point sizeif your device does not
support the point size that you specified. The troff command uses the
closest valid point size to continue formatting.

canonls Canon Lasershot LBP-B406S/D/E,A404/E,A304E.

ibm3812 3812 Pageprinter II.

ibm3816 3816 Pageprinter.

hplj Hewlett-Packard LaserJet II.

ibm5585H-T 5585-H01 Traditional Chinese Language support.

ibm5587G 5587-G01, 5584-H02, 5585-H01, 5587-H01, and 5589-H01

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#VvAA10gsc

250

Kanji Printer multibyte language support.

psc PostScript printer.

X100 AIXwindows display.

Note: You also can set the TYPESETTER environment variable to one of
the preceding values instead of using the -TName flag of
the troff command.

-man Selects the man macro processing package.

-me Selects the me macro processing package.

-mm Selects the mm macro processing package.

-mptx Selects the mptx macro processing package.

-ms Selects the ms macro processing package.

-mv Selects the mv macro processing package.

Note: See Macro Packages for Formatting Tools for more inforamtion on the macros.

-z Prints only messages generated by .tm (workstation message) requests.

- Forces input to be read from standard input.

Environment Variables

TYPESETTER Contains information about a particular printing device.

Examples

The following is an example of the troff command:

troff -Tibm3812 File | ibm3812 | qprt

Macro Packages for Formatting Tools

The following macro packages are part of the Formatting Tools in the Text Formatting
System and are described in more detail on the next pages:

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A151Z92bf3
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A362V06f
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#K9f71f0holl
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A5V16
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#Fu92160holl
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#p5z52b0holl
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#JyJqj259mart
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#aQAA10gsc

251

man Enables you to create your own manual pages from online manual pages.

me Provides macros for formatting papers.

mm Formats documents with nroff and troff formatters.

mptx Formats a permuted index.

ms Provides a formatting facility for various styles of articles, theses, and books.

mv Typesets English-language view graphs and slides by using the troffcommand.

man Macro Package for the nroff and troff Commands

The man macro package is provided to enable users to create their own manual pages
from online manual pages that have been processed with either the nroff command
or troff command. The man macro package is used with either the nroff command or
the troff command.

Note: The man macro package cannot be used to process the InfoExplorer information
bases into manual pages.

Special macros, strings, and number registers exist, internal to the man macro
package, in addition to the following lists of format macros, strings, and registers.
Except for the names predefined by the troff command and the d, m, and y number
registers, all such internal names are of the form SymbolAlpha, where Symbol is one
of),], or }, and Alphais any alphanumeric character.

The man macro package uses only the Roman font. If the input text of an entry contains
requests for other fonts (for example, the .I format macro, .RB request, or \fI request)
the corresponding fonts must be mounted.

Format Macros

The following macros are used to alter the characteristics of manual pages that are
formatted using the manmacro package.

Type font and size are reset to default values before each paragraph and after
processing font- and size-setting macros (for example, the .I format macro, .SM format
macro, and .B format macro).

Tab stops are neither used nor set by any of the format macros except the .DT format
macro and the .TH format macro.

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A151Z92bf3
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A362V06f
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#K9f71f0holl
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A5V16
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#Fu92160holl
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#p5z52b0holl
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds4/nroff.htm#A771520holl
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#AC15370holl
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A151Z92bf5
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A151Z92c0b
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A151Z92c0f
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A151Z92bf6

252

.B [Text] Makes text bold.

The Text variable represent up to six words; use " " (double
quotation marks) to include character spaces in a word. If
the variable is empty, this treatment is applied to the next
input text line that contains text to be printed. For example,
use the .I format macro to italicize an entire line, or use
the .SM and .B format macros to produce an entire line of
small-bold text. By default, hyphenation is turned off for
the nroff command, but remains on for the troff command.

.DT Restores default tab settings every 5 ens for

the nroff command and every 7.2 ens for

the troff command.

.HP [Indent] Begins a paragraph with a hanging indent as specified by

the Indentvariable.

If the Indent variable is omitted, the previous Indent value is
used. This value is set to its default (5 ens for
the nroff command and 7.2 ens for the troff command) by
the .TH format macro, .P format macro, and .RS format
macro, and restored by the .RE format macro. The default
unit for Indent is ens.

.I [Text] Makes text italic.

The Text variable represent up to six words; use " " (double
quotation marks) to include character spaces in a word. If
the variable is empty, this treatment is applied to the next
input text line that contains text to be printed. For example,
use the .I format macro to italicize an entire line, or use
the .SM and .B format macros to produce an entire line of
small-bold text. By default, hyphenation is turned off for
the nroff command, but remains on for the troff command.

.IP [Tag] [Indent] Same as the .TP Indent macro with the Tag variable; if the

value of the Tag variable is NULL, begin indented

paragraph. This macro is often used to get an indented

paragraph without a tag.

If the Indent variable is omitted, the previous Indent value is
used. This value is set to its default (5 ens for
the nroff command and 7.2 ens for the troff command) by
the .TH format macro, .P format macro, and .RS format
macro, and restored by the .RE format macro. The default
unit for Indent is ens.

253

.P Begins paragraph with normal font, point size, and indent.

The .PP macro is a synonym for the mm macro

package .P macro.

.PD [Number] Sets inter-paragraph distance the number of vertical spaces

specified by the Number parameter. The

default Number variable value is 0.4v for

the troff command and 1v for the nroff command.

.PM [Indicator] Sets proprietary marking as follows:

Indicator Marking

P PRIVATE

N NOTICE

No Indicator specified Turns off proprietary marking.

.RE [Number] Ends relative indent (.RS) at indent level position specified

by the Number variable. If the Number variable value is

omitted, return to the most recent lower indent level.

.RI Character1Character2... Concatenates the Roman Character1 with the

italic Character2; alternate these two fonts up to six sets

of Character1Character2. Similar macros alternate between

any two of Roman, italic, and bold: the .IR, .RB, .BR, .IB,

and .BI macros.

.RS [Indent] Increases relative indent (initially zero). Indent all output an

extra number of units from the left margin as specified by

the Indent variable.

If the Indent variable is omitted, the previous Indent value is
used. This value is set to its default (5 ens for
the nroff command and 7.2 ens for the troff command) by
the .TH format macro, .P format macro, and .RS format
macro, and restored by the .RE format macro. The default
unit for Indent is ens.

.SH [Text] Places subhead text.

The Text variable represent up to six words; use " " (double

254

quotation marks) to include character spaces in a word. If
the variable is empty, this treatment is applied to the next
input text line that contains text to be printed. For example,
use the .I format macro to italicize an entire line, or use
the .SM and .B format macros to produce an entire line of
small-bold text. By default, hyphenation is turned off for
the nroff command, but remains on for the troff command.

.SM [Text] Makes text one point smaller than default point size.

The Text variable represent up to six words; use " " (double
quotation marks) to include character spaces in a word. If
the variable is empty, this treatment is applied to the next
input text line that contains text to be printed. For example,
use the .I format macro to italicize an entire line, or use
the .SM and .B format macros to produce an entire line of
small-bold text. By default, hyphenation is turned off for
the nroff command, but remains on for the troff command.

.SS [Text] Places sub-subhead text.

The Text variable represent up to six words; use " " (double
quotation marks) to include character spaces in a word. If
the variable is empty, this treatment is applied to the next
input text line that contains text to be printed. For example,
use the .I format macro to italicize an entire line, or use
the .SM and .B format macros to produce an entire line of
small-bold text. By default, hyphenation is turned off for
the nroff command, but remains on for the troff command.

.TH [Title][Section][Commentary][Name]

 Sets the title and entry heading. This macro calls

the .DT format macro.

Variable Marking

Title Title

Section Section number

Commentary Extra commentary

Name New manual name.

Note: If the .TH format macro values contain character

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A151Z92c09

255

spaces that are not enclosed in " " (double quotation
marks), irregular dots are displayed on the output.

.TP [Indent] Begins indented paragraph with hanging tag. The next input

line that contains text is the tag. If the tag does not fit, it is

printed on a separate line.

If the Indent variable is omitted, the previous Indent value is
used. This value is set to its default (5 ens for
the nroff command and 7.2 ens for the troff command) by
the .TH format macro, .P format macro, and .RS format
macro, and restored by the .RE format macro. The default
unit for Indent is ens.

Strings

*R Adds trademark, (Reg.) for the nroff command and the registered trademark

symbol for the troff command.

*S Changes to default type size.

*(Tm Adds trademark indicator.

Registers

IN Indent left margin relative to subheads. The default is 7.2 ens for the troff command

and 5 ens for the nroff command.

LL Line length including the value specified by the IN register.

PD Current inter-paragraph distance.

Flags

-rs1 Reduces default page size of 8.5 inches by 11 inches with a 6.5-inch by 10-inch

text area to a 6-inch by 9-inch page size with a 4.75-inch by 8.375-inch text area.

This flag also reduces the default type size from 10-point to 9-point and the vertical

line spacing from 12-point to 10-point.

Examples

1. To process the file your.book and pipe the formatted output to the local line
printer, qprt, enter:

nroff -Tlp -man your.book | qprt -dp

256

2. To process the files my.book and dept.book, which contain tables, and pipe the
formatted output to the local line printer, qprt, enter:

tbl my.book dept.book | nroff -Tlp -man | col -Tlp | qprt -dp

Note: Before the output is sent to qprt, it is first filtered through the col command
to process reverse linefeeds used by the tbl command.

3. To process the file group, which contains pictures, graphs, and tables, and
prepare the formatted output for processing on the IBM 3816 printer, enter:

4. grap group | pic | tbl | troff -Tibm3816 -man \
 | ibm3816 | qprt -dp

Notes:

1. If manual pages created with the man macro package are intended for an online
facility, components requiring the troff command, such as
the grap or pic command, should be avoided.

2. The grap command precedes the piccommand since it is a preprocessor to
the pic command; the reverse does not format correctly.

3. The col command is not required as a filter to the tbl command; typeset
documents do not require reverse linefeeds.

me Macro Package for the nroff and troff Commands

The me package of the nroff and troff command macro definitions provides a
formatting facility for technical papers in various formats. The col command may be
required to postprocess nroff output in certain cases.

The macro requests are defined in the following section, in me Requests.
Many nroff/troff requests can have unpredictable results in conjunction with this
package. However, the following requests can be used after the first .pp request:

.bp Begins new page.

.br Breaks output line here.

.ce [Number]

 Centers next specified number of lines. Default is 1 (one).

.ls [Number]

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds1/col.htm#A133Z96dd
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A362V07e

257

 Sets line spacing. Text is single-spaced if Number is set to 1 (one);

double-spaced if the value is set to 2.

.na Leaves right margin unjustified.

.sp [Number]

 Inserts the specified number of spacing lines.

.sz [+]Number

 Adds the specified number to point size.

.ul [Number]

 Underlines next specified number of lines. Default is 1 (one).

Output of the eqn, neqn, refer, and tbl commands preprocessors for equations and
tables can be used as input.

me Requests

The following list contains all macros, strings, and number registers available in
the me macros. Selected troff commands, registers, and functions are included.

\(space) Defines unpaddable space (troff command built-in function).

\" Comments to end of line (troff command built-in function).

*# Indicates optional delayed text tag string.

\$Number Interpolates the value specified by the Number variable

(troff command built-in function).

\n($0 Defines section depth (number register).

.$0 Started after section title printed (user-definable macro).

\n($1 Defines first section number (number register).

.$1 Started before printing depth 1 (one) section (user-definable macro).

258

\n($2 Defines second section number (number register).

.$2 Started before printing depth 2 section (user-definable macro).

\n($3 Defines third section number (number register).

.$3 Started before printing depth 3 section (user-definable macro).

\n($4 Defines fourth section number (number register).

.$4 Started before printing depth 4 section (user-definable macro).

\n($5 Defines fifth section number (number register).

.$5 Started before printing depth 5 section (user-definable macro).

\n($6 Defines sixth section number (number register).

.$6 Started before printing depth 6 section (user-definable macro).

.$C Called at beginning of chapter (user-definable macro).

.$H Indicates text header (user-definable macro).

\n($R Defines relative vertical spacing in displays (number register defined

by default; changing is not recommended).

\n($c Defines current column header (number register).

.$c Prints chapter title (macro defined by default; changing is not

recommended).

\n($d Indicates delayed text number (number register).

\n($f Indicates footnote number (number register).

.$f Prints footer (macro defined by default; changing is not

recommended).

.$h Prints header (macro defined by default; changing is not

recommended).

\n($i Defines paragraph base indent (number register).

259

\n($l Defines column width (number register).

\n($m Indicates number of columns in effect (number register).

*($n Indicates section name (string).

\n($p Defines numbered paragraph number (number register).

.$p Prints section heading (macro defined by default; changing is not

recommended).

\n($r Defines relative vertical spacing in text (number register defined by

default; changing is not recommended).

\n($s Defines column indent (number register).

.$s Separates footnoter from text (macro defined by default; changing is

not recommended).

\n% Defines current page number (number register defined by default;

changing is not recommended).

\& Indicates zero-width character; useful for hiding controls

(troff command built-in function).

\(XX Interpolates special character specified by the XX variable

(troff command built-in function).

.(b Begins block (macro).

.(c Begins centered block (macro).

.(d Begins delayed text (macro).

.(f Begins footnote (macro).

.(l Begins list (macro).

.(q Begins quote (macro).

.(xIndex Begins indexed item in the specified index (macro).

.(z Begins floating keep (macro).

260

.)b Ends block (macro).

.)c Ends centered block (macro).

.)d Ends delayed text (macro).

.)f Ends footnote (macro).

.)l Ends list (macro).

.)q Ends quote (macro).

.)x Ends index entry (macro).

.)z Ends floating keep (macro).

*String Interpolates the value specified by the String variable (troff command

built-in function).

*String1String2 Interpolates the value specified by the String1String2 variable

(troff command built-in function).

** Indicates optional footnote tag string.

.++mH Macro to define paper section. The value specified by the m variable

defines the part of the paper. The m variable can have the following

values:

C Defines chapter.

A Defines appendix.

P Defines preliminary information, such as abstract and table of

contents.

B Defines bibliography.

RC Defines chapters to be renumbered from page 1 (one) of each

chapter.

RA Defines appendix to be renumbered from page 1 (one).

The H parameter defines the new header. If there are any spaces in

261

it, the entire header must be quoted. If you want the header to have
the chapter number in it, use the string \\\n(ch. For example, to
number appendixes A.1, A.2, ..., type: .++ RA '''\\\n(ch.%'. Each
section (such as chapters and appendixes) should be preceded by
the .+c request.

.+cTitle Begins chapter (or appendix, for instance, as set by the .++macro).

The value specified by the Title variable is the chapter title (macro).

*, Indicates cedilla (string).

\- Indicates minus sign (troff command built-in function).

*- Indicates 3/4 em dash (string).

\0 Defines unpaddable digit-width space (troff command built-in

function).

.1c Reverts to single-column output (macro).

.2c Begins two-column output (macro).

*: Indicates umlaut (string).

*< Begins subscript (string).

*> Ends subscript (string).

.EN Ends equation. Space after equation produced by the eqn command

or neqn command (macro).

.EQXY Begins equation; breaks out and adds space. The value specified by

the Y variable is the equation number. The optional X variable value

may be any of the following:

I Indents equation (default).

L Left-adjusts equation.

C Centers equation (macro).

\L'Distance' Indicates vertical line-drawing function for the specified distance

(troff command built-in function).

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A362V0c3

262

.PE Ends pic picture (macro).

.PF Ends pic picture with flyback (macro).

.PS Starts pic picture (macro).

.TE Ends table (macro).

.TH Ends header of table (macro).

.TS X Begins table. If the value of the X variable is H, the table has a

repeated heading (macro).

*[Begins superscript (string).

\n(.$ Defines number of options to macro (number register defined by

default; changing is not recommended).

\n(.i Indicates current indent (number register defined by default; changing

is not recommended).

\n(.l Indicates current line length (number register defined by default;

changing is not recommended).

\n(.s Indicates current point size (number register defined by default;

changing is not recommended).

*(4 Indicates acute accent (string).

*(` Indicates grave accent (string).

\(4 Indicates acute accent (troff command built-in function).

\(` Indicates grave accent (troff command built-in function).

*] Ends superscript (string).

\^ Indicates 1/12 em narrow space (troff command built-in function).

*^ Indicates caret (string).

.acAuthorNumber Sets up for ACM-style output. The Author variable specifies the

author name or names. The Number variable specifies the total

263

number of pages. Must be used before the first initialization (macro).

.ad Sets text adjustment (macro).

.af Assigns format to register (macro).

.am Appends to macro (macro).

.ar Sets page numbers in Arabic (macro).

.as Appends to string (macro).

.b X Prints in boldface the value specified by the X variable. If

the X variable is omitted, boldface text follows (macro).

.ba +Number Augments the base indent by the specified Number value. Sets the

indent on regular text such as paragraphs (macro).

.bc Begins new column (macro).

.bi X Prints in bold italic the value specified by the X parameter, in no-fill

mode only. If the X parameter is not used, bold italic text follows

(macro).

\n(bi Displays block indent (number register).

.bl Requests blank lines, even at top of page (macro).

\n(bm Sets bottom title margin (number register).

.bp Begins page (macro).

.br Sets break; starts new line (macro).

\n(bs Displays block pre- or post-spacing (number register).

\n(bt Blocks keep threshold (number register).

.bu Begins bulleted paragraph (macro).

.bx X Prints in no-fill mode only the value specified by the X variable in box

(macro).

264

\c Continues input (troff command built-in function).

.ce Centers lines (macro).

\n(ch Defines current chapter number (number register).

.de Defines macro (macro).

\n(df Displays font (number register).

.ds Defines string (macro).

\n(dw Defines current day of week (number register).

*(dw Defines current day of week (string).

\n(dy Defines current day of month (number register).

\e Indicates printable version of \ (backslash) (troff command built-in

function).

.ef'X'Y'Z'

 Sets even-page footer to the values specified by the XYZ variables

(macro).

.eh'X'Y'Z'

 Sets even-page header to the values specified by the XYZ variables

(macro).

.el Specifies the else part of an if/else conditional (macro).

.ep Ends page (macro).

\n(es Indicates equation pre- or post-space (number register).

\fFont Sets inline font change to the specified Font variable value

(troff command built-in function).

\f(Fontf Sets inline font change to the specified Fontf variable value

(troff command built-in function).

265

.fc Sets field characters (macro).

\n(ff Sets footnote font (number register).

.fi Fills output lines (macro).

\n(fi Indicates footnote indent, first line only (number register).

\n(fm Sets footer margin (number register).

.fo 'X'Y'Z'

 Sets footer to the values specified by the XYZ variables (macro).

\n(fp Sets footnote point size (number register).

\n(fs Sets footnote pre-space (number register).

\n(fu Sets footnote indent from right margin (number register).

\h'Distance' Sets local horizontal motion for the specified distance (troff command

built-in function).

.hc Sets hyphenation character (macro).

.he 'X'Y'Z'

 Sets header to the values specified by the XYZ variables (macro).

.hl Draws horizontal line (macro).

\n(hm Sets header margin (number register).

.hx Suppresses headers and footers on next page (macro).

.hy Sets hyphenation mode (macro).

.i X Italicizes the value specified by the X variable. If the Xvariable is

omitted, italic text follows (macro).

.ie Specifies the else part of an if/else conditional (macro).

.if Designates a conditional (macro).

266

\n(ii Sets indented paragraph indent (number register).

.in Indents (transient); use the .ba macro if pervasive (macro).

.ip X Y Starts indented paragraph, with hanging tag specified by

the X variable. Indentation is the en value specified by the Y variable.

Default is 5 (macro).

.ix Indents, no break (macro).

\l'Distance' Starts horizontal line-drawing function for the specified distance

(troff command built-in function).

.lc Sets leader repetition character (macro).

.lh Interpolates local letterhead (macro).

.ll Sets line length (macro).

.lo Reads in a file of local macros of the form .*x. Must be used before

initialization (macro).

.lp Begins left-justified paragraph (macro).

*(lq Designates left quotation marks (string).

.ls Sets multi-line spacing (macro).

.m1 Sets space from top of page to header (macro).

.m2 Sets space from header to text (macro).

.m3 Sets space from text to footer (macro).

.m4 Sets space from footer to bottom of page (macro).

.mc Inserts margin character (macro).

.mk Marks vertical position (macro).

\n(mo Defines month of year (number register).

*(mo Defines current month (string).

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A362V0f4

267

\nX Interpolates number register specified by the X variable value

(number register).

\n(XX Interpolates number register specified by the XX variable (number

register).

.n1 Sets number lines in margin (macro).

.n2 Sets number lines in margin (macro).

.na Turns off text adjustment (macro).

.neNumber Sets the specified number of lines of vertical space (macro).

.nf Leaves output lines unfilled (macro).

.nh Turns off hyphenation (macro).

.np Begins numbered paragraph (macro).

.nr Sets number register (macro).

.ns Indicates no-space mode (macro).

*o Indicates superscript circle (such as for Norse A; string).

.of'X'Y'Z'

 Sets odd footer to the values specified by the XYZ variables (macro).

.oh'X'Y'Z'

 Sets odd header to the values specified by the XYZ variables

(macro).

.pa Begins page (macro).

.pd Prints delayed text (macro).

\n(pf Indicates paragraph font (number register).

\n(pi Indicates paragraph indent (number register).

268

.pl Sets page length (macro).

.pn Sets next page number (macro).

.po Sets page offset (macro).

\n(po Simulates page offset (number register).

.pp Begins paragraph, first line indented (macro).

\n(pp Sets paragraph point size (number register).

\n(ps Sets paragraph pre-space (number register).

.q Indicates quoted (macro).

*(qa For all (string).

*qe There exists (string).

\n(qi Sets quotation indent; also shortens line (number register).

\n(qp Sets quotation point size (number register).

\n(qs Sets quotation pre- or post-space (number register).

.r Sets Roman text to follow (macro).

.rb Sets real bold font (macro).

.re Resets tabs to default values (macro).

.rm Removes macro or string (macro).

.rn Renames macro or string (macro).

.ro Sets page numbers in Roman (macro).

*(rq Indicates right quotation marks (string).

.rr Removes register (macro).

.rs Restores register (macro).

269

.rt Returns to vertical position (macro).

\sSize Changes inline size to specified size (troff command built-in

function).

.sc Reads in a file of special characters and diacritical marks. Must be

used before initialization (macro).

\n(sf Sets section title font (number register).

.shLevelTitle Indicates section head to follow; font automatically bold.

The Level variable specifies the level of section. The Title variable

specifies the title of section (macro).

\n(si Sets relative base indent-per-section depth (number register).

.sk Leaves the next page blank. Only one page is remembered ahead

(macro).

.smX Sets, in a smaller point size, the value specified by the X variable

(macro).

.so Indicates source input file (macro).

\n(so Sets additional section title offset (number register).

.sp Indicates vertical space (macro).

\n(sp Indicates section title point size (number register).

\n(ss Indicates section prespace (number register).

.sx Changes section depth (macro).

.sz +Number Augments point size by the specified number of points (macro).

.ta Sets tab stops (macro).

.tc Sets tab repetition character (macro).

*(td Sets today's date (string).

n(tf Indicates title font (number register).

270

.th Produces paper in thesis format. Must be used before initialization

(macro).

.ti Indicates temporary indent, next line only (macro).

.tl Indicates 3-part title (macro).

\n(tm Sets top title margin (number register).

.tp Begins title page (macro).

\n(tp Sets title point size (number register).

.tr Translates (macro).

.u X Underlines the value specified by the X variable, even in

the troff command. No-fill mode only (macro).

.uh Sets section head to follow; font automatically bold. Similar to

the .sh macro, but unnumbered (macro).

.ul Underlines next line (macro).

\v'Distance' Local vertical motion for the specified distance (troff command built-

in function).

*v Inverts v for Czech e (string).

\w'String' Returns width of the specified string (troff command built-in function).

.xl Sets local line length (macro).

.xpIndex Prints the specified index (macro).

\n(xs Sets index entry prespace (number register).

\n(xu Sets index indent, from right margin (number register).

\n(yr Indicates year, last two digits only (number register).

\n(zs Sets floating keep pre- or post-space (number register).

\{ Begins conditional group (troff command built-in function).

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/troff.htm#A107A13d50

271

\| 1/6 em, narrow space (troff command built-in function).

\} Ends conditional group (troff command built-in function).

*~ Indicates tilde (string).

Tbl

tbl - formats tables for nroff

SYNOPSIS

 tbl [file ...]

FLAGS

 -TX Produces output without fractional line motions. You use this flag
 when the destination output device or printer or post-filter cannot
 handle fractional line motions.

 -ms Reads in ms macros prior to table formatting.

 -mm Reads in the mm macros prior to table formatting, if your system has
 the *roff mm macros installed.

DESCRIPTION

 The tbl preprocessor is used for formatting tables for nroff. When you run
 tbl, the input files are copied to standard output, except for lines
 between the .TS (table start) and .TE (table end) command lines. All lines
 between the .TS and .TE command lines are assumed to describe a table and
 are reformatted.

 If no arguments are given, tbl reads from standard input, so it can be used
 as a filter.When tbl is used with neqn or other equation formatting *roff
 tools, the tbl command should be invoked first to minimize the volume of
 data passed through the pipes.

272

EXAMPLES

 The following examples show tables that have been coded using tbl macros
 and the results after you run tbl to format the table.

 1.
 .TS
 tab(@);
 c s s
 c c s
 c c c
 l n n.
 Household Population
 Town@Households
 @Number@Size
 Bedminster@789@3.26
 Bernards Twp.@3087@3.74
 Bernardsville@2018@3.30
 Bound Brook@3425@3.04
 Branchburg@1644@3.49
 Bridgewater@7897@3.81
 Far Hills@240@3.19
 .TE
 When formatted by tbl and then nroff, the output is as follows:
 Household Population
 Town Households
 Number Size
 Bedminster 789 3.26
 Bernards Twp. 3087 3.74
 Bernardsville 2018 3.30
 Bound Brook 3425 3.04
 Branchburg 1644 3.49
 Bridgewater 7897 3.81
 Far Hills 240 3.19

 2. The following example shows how to specify column widths using the w
 column option. The width of a column must be large enough to contain
 it's anticipated data. Multiple line column entries are controlled by
 T{ and T}.
 .TS
 tab(@);
 cw(.5i) lw(1.2i) lw(3.0i).
 Return@Error@Description
 _
 0@@Successful completion.

273

 1@ENOM@T{
 Insufficient memory exists to create
 this object. Multiple lines can be
 written in text surrounded by T braces.
 T}

 2@EINVAL@The value specified is invalid.
 .TE
 When formatted by tbl and then nroff, the output is as follows:
 Return Error Description

 0 Successful completion.

 1 ENOM Insufficient memory exists to create
 this object. Multiple lines can be
 written in text surrounded by T braces.

 2 EINVAL The value specified is invalid.

Eqn

This manual page describes the GNU version of eqn, which is part of the groff

document formatting system. eqn compiles descriptions of equations embedded

within troff input files into commands that are understood by troff. Normally, it should be

invoked using the -e option of groff. The syntax is quite compatible with Unix eqn. The

output of GNU eqn cannot be processed with Unix troff; it must be processed with GNU

troff. If no files are given on the command line, the standard input will be read. A

filename of - will cause the standard input to be read.

eqn searches for the file eqnrc in the directories given with the -M option first, then

in /usr/lib/groff/site-tmac, /usr/share/groff/site-tmac, and finally in the standard macro

directory /usr/share/groff/1.18.1.1/tmac. If it exists, eqn will process it before the other

input files. The -R option prevents this.

GNU eqn does not provide the functionality of neqn: it does not support low-resolution,

typewriter-like devices (although it may work adequately for very simple input).

274

OPTIONS

Tag Description

-dxy Specify delimiters x and y for the left and right end, respectively, of

in-line equations. Any delim statements in the source file overrides

this.

-C Recognize .EQ and .EN even when followed by a character other

than space or newline.

-N Don‘t allow newlines within delimiters. This option allows eqn to

recover better from missing closing delimiters.

-v Print the version number.

-r Only one size reduction.

-mn The minimum point-size is n. eqn will not reduce the size of

subscripts or superscripts to a smaller size than n.

-Tname The output is for device name. The only effect of this is to define a

macro name with a value of 1. Typically eqnrc will use this to provide

definitions appropriate for the output device. The default output

device is ps.

-Mdir Search dir for eqnrc before the default directories.

-R Don‘t load eqnrc.

-fF This is equivalent to a gfont F command.

-sn This is equivalent to a gsize n command. This option is deprecated.

eqn will normally set equations at whatever the current point size is

when the equation is encountered.

-pn This says that subscripts and superscripts should be n points

smaller than the surrounding text. This option is deprecated.

275

Normally eqn makes sets subscripts and superscripts at 70% of the

size of the surrounding text.

USAGE

Only the differences between GNU eqn and Unix eqn are described here.

Most of the new features of GNU eqn are based on TeX. There are some references to

the differences between TeX and GNU eqn below; these may safely be ignored if you

do not know TeX.

Automatic spacing

eqn gives each component of an equation a type, and adjusts the spacing between

components using that type. Possible types are:

Tag Description

ordinary an ordinary character such as 1 or x;

operator a large operator such as S;

binary a binary operator such as +;

relation a relation such as =;

opening a opening bracket such as (;

closing a closing bracket such as);

punctuation a punctuation character such as ,;

inner a subformula contained within brackets;

suppress spacing that suppresses automatic spacing adjustment.

Components of an equation get a type in one of two ways.

Tag Description

276

type t e This yields an equation component that contains e but that has

type t, where t is one of the types mentioned above. For

example, times is defined as

Tag Description

 type "binary" \(mu

 The name of the type doesn‘t have to be quoted, but quoting

protects from macro expansion.

chartype t text

 Unquoted groups of characters are split up into individual

characters, and the type of each character is looked up; this

changes the type that is stored for each character; it says that the

characters in text from now on have type t. For example,

Tag Description

 chartype "punctuation" .,;:

 would make the characters .,;: have type punctuation whenever they

subsequently appeared in an equation. The type t can also

be letter or digit; in these cases chartype changes the font type of

the characters. See the Fonts subsection.

New primitives

Ta

g
Description

e1 smallover e2

 This is similar to over; smallover reduces the size of e1 and e2; it also puts less

vertical space between e1 or e2 and the fraction bar. The over primitive

corresponds to the TeX \over primitive in display styles; smallover corresponds

to \over in non-display styles.

277

vcenter e

 This vertically centers e about the math axis. The math axis is the vertical position

about which characters such as + and - are centered; also it is the vertical position

used for the bar of fractions. For example, sum is defined as

Tag Description

 { type "operator" vcenter size +5 \(*S }

e1 accent e2

 This sets e2 as an accent over e1. e2 is assumed to be at the correct height for a

lowercase letter; e2 will be moved down according if e1 is taller or shorter than a

lowercase letter. For example, hat is defined as

Tag Description

 accent { "^" }

 dotdot, dot, tilde, vec and dyad are also defined using the accent primitive.

e1 uaccent e2

 This sets e2 as an accent under e1. e2 is assumed to be at the correct height for a

character without a descender; e2 will be moved down if e1 has a

descender. utilde is pre-defined using uaccent as a tilde accent below the baseline.

split stexts

 This has the same effect as simply

Tag Description

 text

 but text is not subject to macro expansion because it is quoted; text will be split up

278

and the spacing between individual characters will be adjusted.

nosplit text

 This has the same effect as

Tag Description

 stexts

 but because text is not quoted it will be subject to macro expansion; text will not be

split up and the spacing between individual characters will not be adjusted.

e opprime

 This is a variant of prime that acts as an operator on e. It produces a different result

from prime in a case such as A opprime sub 1: with opprime the 1 will be tucked

under the prime as a subscript to the A (as is conventional in mathematical

typesetting), whereas with prime the 1 will be a subscript to the prime character.

The precedence of opprime is the same as that of bar and under, which is higher

than that of everything except accent and uaccent. In unquoted text a ‘ that is not

the first character will be treated like opprime.

special text e

 This constructs a new object from e using a troff(1) macro named text. When the

macro is called, the string 0s will contain the output for e, and the number

registers 0w, 0h, 0d, 0skern and 0skew will contain the width, height, depth,

subscript kern, and skew of e. (The subscript kern of an object says how much a

subscript on that object should be tucked in; the skew of an object says how far to

the right of the center of the object an accent over the object should be placed.)

The macro must modify 0s so that it will output the desired result with its origin at

the current point, and increase the current horizontal position by the width of the

object. The number registers must also be modified so that they correspond to the

result.

For example, suppose you wanted a construct that ‗cancels‘ an expression by

drawing a diagonal line through it.

279

Tag Description

.EQ

define cancel ‘special Ca‘

.EN

.de Ca

.ds 0s \Z‘*(0s‘\v‘\\n(0du‘\D‘l \\n(0wu -\\n(0hu-\\n(0du‘\v‘\\n(0hu‘

..

Then you could cancel an expression e with cancel { e }

Here‘s a more complicated construct that draws a box round an expression:

.EQ

define box ‘special Bx‘

.EN

.de Bx

.ds 0s \Z‘\h‘1n‘*(0s‘\

\Z‘\v‘\\n(0du+1n‘\D‘l \\n(0wu+2n 0‘\D‘l 0 -\\n(0hu-\\n(0du-2n‘\

\D‘l -\\n(0wu-2n 0‘\D‘l 0 \\n(0hu+\\n(0du+2n‘‘\h‘\\n(0wu+2n‘

.nr 0w +2n

.nr 0d +1n

.nr 0h +1n

..

280

Customization

The appearance of equations is controlled by a large number of parameters. These can

be set using the set command.

Tag Description

set p n This sets parameter p to value n ; n is an integer. For example,

Tag Description

 set x_height 45

 says that eqn should assume an x height of 0.45 ems.

Possible parameters are as follows. Values are in units of

hundredths of an em unless otherwise stated. These descriptions

are intended to be expository rather than definitive.

Tag Description

minimum_size eqn will not set anything at a smaller point-

size than this. The value is in points.

fat_offset The fat primitive emboldens an equation

by overprinting two copies of the equation

horizontally offset by this amount.

over_hang A fraction bar will be longer by twice this

amount than the maximum of the widths of

the numerator and denominator; in other

words, it will overhang the numerator and

denominator by at least this amount.

accent_width When bar or under is applied to a single

character, the line will be this long.

Normally, bar or under produces a line

whose length is the width of the object to

which it applies; in the case of a single

281

character, this tends to produce a line that

looks too long.

delimiter_factor Extensible delimiters produced with

the left and right primitives will have a

combined height and depth of at least this

many thousandths of twice the maximum

amount by which the sub-equation that the

delimiters enclose extends away from the

axis.

delimiter_shortfall Extensible delimiters produced with

the left and right primitives will have a

combined height and depth not less than

the difference of twice the maximum

amount by which the sub-equation that the

delimiters enclose extends away from the

axis and this amount.

null_delimiter_space This much horizontal space is inserted on

each side of a fraction.

script_space The width of subscripts and superscripts is

increased by this amount.

thin_space This amount of space is automatically

inserted after punctuation characters.

medium_space This amount of space is automatically

inserted on either side of binary operators.

thick_space This amount of space is automatically

inserted on either side of relations.

x_height The height of lowercase letters without

ascenders such as x.

282

axis_height The height above the baseline of the

center of characters such as + and -. It is

important that this value is correct for the

font you are using.

default_rule_thickness This should set to the thickness of

the \(ru character, or the thickness of

horizontal lines produced with

the \D escape sequence.

num1 The over command will shift up the

numerator by at least this amount.

num2 The smallover command will shift up the

numerator by at least this amount.

denom1 The over command will shift down the

denominator by at least this amount.

denom2 The smallover command will shift down the

denominator by at least this amount.

sup1 Normally superscripts will be shifted up by

at least this amount.

sup2 Superscripts within superscripts or upper

limits or numerators of smallover fractions

will be shifted up by at least this amount.

This is usually less than sup1.

sup3 Superscripts within denominators or

square roots or subscripts or lower limits

will be shifted up by at least this amount.

This is usually less than sup2.

sub1 Subscripts will normally be shifted down by

at least this amount.

283

sub2 When there is both a subscript and a

superscript, the subscript will be shifted

down by at least this amount.

sup_drop The baseline of a superscript will be no

more than this much amount below the top

of the object on which the superscript is

set.

sub_drop The baseline of a subscript will be at least

this much below the bottom of the object

on which the subscript is set.

big_op_spacing1 The baseline of an upper limit will be at

least this much above the top of the object

on which the limit is set.

big_op_spacing2 The baseline of a lower limit will be at least

this much below the bottom of the object

on which the limit is set.

big_op_spacing3 The bottom of an upper limit will be at least

this much above the top of the object on

which the limit is set.

big_op_spacing4 The top of a lower limit will be at least this

much below the bottom of the object on

which the limit is set.

big_op_spacing5 This much vertical space will be added

above and below limits.

baseline_sep The baselines of the rows in a pile or

matrix will normally be this far apart. In

most cases this should be equal to the

sum of num1 and denom1.

284

shift_down The midpoint between the top baseline

and the bottom baseline in a matrix or pile

will be shifted down by this much from the

axis. In most cases this should be equal

to axis_height.

column_sep This much space will be added between

columns in a matrix.

matrix_side_sep This much space will be added at each

side of a matrix.

draw_lines If this is non-zero, lines will be drawn using

the \D escape sequence, rather than with

the \l escape sequence and

the \(ru character.

body_height The amount by which the height of the

equation exceeds this will be added as

extra space before the line containing the

equation (using \x.) The default value is

85.

body_depth The amount by which the depth of the

equation exceeds this will be added as

extra space after the line containing the

equation (using \x.) The default value is

35.

nroff If this is non-zero, then ndefine will behave

like define and tdefine will be ignored,

otherwise tdefine will behave

like define and ndefine will be ignored. The

default value is 0 (This is typically changed

to 1 by the eqnrc file for

the ascii, latin1, utf8, and cp1047 devices.)

A more precise description of the role of many of these parameters

can be found in Appendix H of The TeXbook.

285

Macros

Macros can take arguments. In a macro body, $n where n is between 1 and 9, will be

replaced by the n-th argument if the macro is called with arguments; if there are fewer

than n arguments, it will be replaced by nothing. A word containing a left parenthesis

where the part of the word before the left parenthesis has been defined using

the define command will be recognized as a macro call with arguments; characters

following the left parenthesis up to a matching right parenthesis will be treated as

comma-separated arguments; commas inside nested parentheses do not terminate an

argument.

Tag Description

sdefine name X anything X

 This is like the define command, but name will not be recognized if

called with arguments.

include sfiles

 Include the contents of file. Lines of file beginning

with .EQ or .EN will be ignored.

ifdef name X anything X

 If name has been defined by define (or has been automatically

defined because name is the output device) process anything;

otherwise ignore anything. X can be any character not appearing

in anything.

Fonts

eqn normally uses at least two fonts to set an equation: an italic font for letters, and a

roman font for everything else. The existing gfont command changes the font that is

used as the italic font. By default this is I. The font that is used as the roman font can be

changed using the new grfont command.

Tag Description

286

grfont f

 Set the roman font to f.

The italic primitive uses the current italic font set by gfont; the roman primitive uses the

current roman font set by grfont. There is also a new gbfont command, which changes

the font used by the bold primitive. If you only use the roman, italic and bold primitives

to changes fonts within an equation, you can change all the fonts used by your

equations just by using gfont, grfont and gbfont commands.

You can control which characters are treated as letters (and therefore set in italics) by

using the chartype command described above. A type of letter will cause a character to

be set in italic type. A type of digit will cause a character to be set in roman type.

FILES

Tag Description

/usr/share/groff/1.18.1.1/tmac/eqnrc Initialization file.

Pic

This manual page describes the GNU version of pic, which is part of the groff document

formatting system. pic compiles descriptions of pictures embedded within troff or input

files into commands that are understood by or troff. Each picture starts with a line

beginning with .PS and ends with a line beginning with .PE. Anything outside

of .PS and .PE is passed through without change.

It is the user‘s responsibility to provide appropriate definitions of
the PS and PE macros. When the macro package being used does not supply such
definitions (for example, old versions of -ms), appropriate definitions can be obtained
with -mpic: these will center each picture.

OPTIONS
Options that do not take arguments may be grouped behind a single -. The special

option -- can be used to mark the end of the options. A filename of - refers to the

standard input.

Tag Description

287

-C Recognize .PS and .PE even when followed by a character other

than space or newline.

-S Safer mode; do not execute sh commands. This can be useful when

operating on untrustworthy input. (enabled by default)

-U Unsafe mode; revert the default option -S.

-n Don‘t use the groff extensions to the troff drawing commands. You

should use this if you are using a postprocessor that doesn‘t support

these extensions. The extensions are described in groff_out(5).

The -n option also causes pic not to use zero-length lines to draw

dots in troff mode.

-t mode.

-c Be more compatible with tpic. Implies -t. Lines beginning with \ are

not passed through transparently. Lines beginning with . are passed

through with the initial . changed to \. A line beginning with .ps is

given special treatment: it takes an optional integer argument

specifying the line thickness (pen size) in milliinches; a missing

argument restores the previous line thickness; the default line

thickness is 8 milliinches. The line thickness thus specified takes

effect only when a non-negative line thickness has not been

specified by use of the thickness attribute or by setting

the linethick variable.

-v Print the version number.

-z In mode draw dots using zero-length lines.

The following options supported by other versions of pic are ignored:

-D Draw all lines using the \D escape sequence. pic always does this.

-T dev
Generate output for the troff device dev. This is unnecessary

288

because the troff output generated by pic is device-independent.

USAGE
This section describes only the differences between GNU pic and the original version

of pic. Many of these differences also apply to newer versions of Unix pic. A complete

documentation is available in the file

/usr/share/doc/groff/1.18.1.1/pic.ms

mode

mode is enabled by the -t option. In mode, pic will define a vbox called \graph for each

picture. You must yourself print that vbox using, for example, the command

\centerline{\box\graph}

Actually, since the vbox has a height of zero this will produce slightly more vertical
space above the picture than below it;

\centerline{\raise 1em\box\graph}

would avoid this.

You must use a driver that supports the tpic specials, version 2.

Lines beginning with \ are passed through transparently; a % is added to the end of the
line to avoid unwanted spaces. You can safely use this feature to change fonts or to
change the value of \baselineskip. Anything else may well produce undesirable
results; use at your own risk. Lines beginning with a period are not given any special
treatment.

Commands

Tag Description

for variable = expr1 to expr2

 [by [*]expr3] do X body X Set variable to expr1. While the value

of variable is less than or equal to expr2, do body and

increment variable by expr3; if by is not given, increment variable by

1. If expr3 is prefixed by * then variable will instead be multiplied

by expr3. X can be any character not occurring in body.

if expr then X if-true X

289

 [else Y if-false Y] Evaluate expr; if it is non-zero then do if-true,

otherwise do if-false. X can be any character not occurring in if-

true. Y can be any character not occurring in if-false.

print arg...

 Concatenate the arguments and print as a line on stderr.

Each arg must be an expression, a position, or text. This is useful for

debugging.

command arg...

 Concatenate the arguments and pass them through as a line to troff

or . Each arg must be an expression, a position, or text. This has a

similar effect to a line beginning with . or \, but allows the values of

variables to be passed through.

sh X command X

 Pass command to a shell. X can be any character not occurring

in command.

copy "filename"

 Include filename at this point in the file.

copy ["filename"] thru X body X

 [until "word"]

copy ["filename"] thru macro

 [until "word"] This construct does body once for each line

of filename; the line is split into blank-delimited words, and

occurrences of $i in body, for i between 1 and 9, are replaced by

the i-th word of the line. If filename is not given, lines are taken from

290

the current input up to .PE. If an until clause is specified, lines will

be read only until a line the first word of which is word; that line will

then be discarded. X can be any character not occurring in body. For

example,

Tag Description

 .PS
copy thru % circle at ($1,$2) % until "END"
1 2
3 4
5 6
END
box
.PE

 is equivalent to

Tag Description

 .PS
circle at (1,2)
circle at (3,4)
circle at (5,6)
box
.PE

 The commands to be performed for each line can also be taken from

a macro defined earlier by giving the name of the macro as the

argument to thru.

reset

reset variable1[,] variable2 ...

 Reset pre-defined variables variable1, variable2 ... to their default

values. If no arguments are given, reset all pre-defined variables to

their default values. Note that assigning a value to scale also

causes all pre-defined variables that control dimensions to be reset

291

to their default values times the new value of scale.

plot expr ["text"]

 This is a text object which is constructed by using text as a format

string for sprintf with an argument of expr. If text is omitted a format

string of s%gs is used. Attributes can be specified in the same way

as for a normal text object. Be very careful that you specify an

appropriate format string; pic does only very limited checking of the

string. This is deprecated in favour of sprintf.

variable := expr

 This is similar to = except variable must already be defined,

and expr will be assigned to variable without creating a variable local

to the current block. (By contrast, = defines the variable in the

current block if it is not already defined there, and then changes the

value in the current block only.) For example, the following:

Tag Description

 .PS
x = 3
y = 3
[
 x := 5
 y = 5
]
print x " " y
.PE

 prints 5 3.

Arguments of the form

 X anything X

are also allowed to be of the form

292

 { anything }

In this case anything can contain balanced occurrences of { and }. Strings may

contain X or imbalanced occurrences of { and }.

Expressions

The syntax for expressions has been significantly extended:

x ^ y (exponentiation)
sin(x)
cos(x)
atan2(y, x)
log(x) (base 10)
exp(x) (base 10, ie
10^x)
sqrt(x)
int(x)
rand() (return a random number between 0 and 1)
rand(x) (return a random number between 1 and x; deprecated)
srand(x) (set the random number seed)
max(e1, e2)
min(e1, e2)
!e
e1 && e2
e1 || e2
e1 == e2
e1 != e2
e1 >= e2
e1 > e2
e1 <= e2
e1 < e2
"str1" == "str2"
"str1" != "str2"

String comparison expressions must be parenthesised in some contexts to avoid
ambiguity.

Other Changes

A bare expression, expr, is acceptable as an attribute; it is equivalent to dir expr,

where dir is the current direction. For example

Tag Description

293

 line 2i

means draw a line 2 inches long in the current direction. The ‗i‘ (or ‗I‘) character is ignored;

to use another measurement unit, set the scale variable to an appropriate value.

The maximum width and height of the picture are taken from the

variables maxpswid and maxpsht. Initially these have values 8.5 and 11.

Scientific notation is allowed for numbers. For example

 x = 5e-2

Text attributes can be compounded. For example,

 "foo" above ljust is legal.

There is no limit to the depth to which blocks can be examined. For example,

[A: [B: [C: box]]] with .A.B.C.sw at 1,2

circle at last [].A.B.C is acceptable.

Arcs now have compass points determined by the circle of which the arc is a part.

Circles and arcs can be dotted or dashed. In mode splines can be dotted or dashed.

Boxes can have rounded corners. The rad attribute specifies the radius of the quarter-

circles at each corner. If no rad or diam attribute is given, a radius of boxrad is used.

Initially, boxrad has a value of 0. A box with rounded corners can be dotted or dashed.

The .PS line can have a second argument specifying a maximum height for the picture. If

the width of zero is specified the width will be ignored in computing the scaling factor for the

picture. Note that GNU pic will always scale a picture by the same amount vertically as well

as horizontally. This is different from the DWB 2.0 pic which may scale a picture by a

different amount vertically than horizontally if a height is specified.

Each text object has an invisible box associated with it. The compass points of a text object

294

are determined by this box. The implicit motion associated with the object is also

determined by this box. The dimensions of this box are taken from the width and height

attributes; if the width attribute is not supplied then the width will be taken to be textwid; if

the height attribute is not supplied then the height will be taken to be the number of text

strings associated with the object times textht. Initially textwid and textht have a value of

0.

In (almost all) places where a quoted text string can be used, an expression of the form

 sprintf(sformats, arg,...)

can also be used; this will produce the arguments formatted according to format, which

should be a string as described in printf(3) appropriate for the number of arguments

supplied.

The thickness of the lines used to draw objects is controlled by the linethick variable. This

gives the thickness of lines in points. A negative value means use the default thickness: in

output mode, this means use a thickness of 8 milliinches; in output mode with the -c option,

this means use the line thickness specified by .ps lines; in troff output mode, this means use

a thickness proportional to the pointsize. A zero value means draw the thinnest possible line

supported by the output device. Initially it has a value of -1. There is also a thick[ness]

attribute. For example,

 circle thickness 1.5

would draw a circle using a line with a thickness of 1.5 points. The thickness of lines is not

affected by the value of the scale variable, nor by the width or height given in the .PS line.

Boxes (including boxes with rounded corners), circles and ellipses can be filled by giving

them an attribute of fill[ed]. This takes an optional argument of an expression with a value

between 0 and 1; 0 will fill it with white, 1 with black, values in between with a proportionally

gray shade. A value greater than 1 can also be used: this means fill with the shade of gray

that is currently being used for text and lines. Normally this will be black, but output devices

may provide a mechanism for changing this. Without an argument, then the value of the

variable fillval will be used. Initially this has a value of 0.5. The invisible attribute does not

affect the filling of objects. Any text associated with a filled object will be added after the

object has been filled, so that the text will not be obscured by the filling.

295

Three additional modifiers are available to specify colored objects: outline[d] sets the color

of the outline, shaded the fill color, and colo[u]r[ed] sets both. All three keywords expect a

suffix specifying the color, for example

 circle shaded green outline black

Currently, color support isn‘t available in mode. Predefined color names for groff are in the

device macro files, for example ps.tmac; additional colors can be defined with

the .defcolor request (see the manual page of troff(1) for more details).

pic assumes that at the beginning of a picture both glyph and fill color are set to the default

value.

Arrow heads will be drawn as solid triangles if the variable arrowhead is non-zero and

either mode is enabled or the -n option has not been given. Initially arrowhead has a value

of 1. Note that solid arrow heads are always filled with the current outline color.

The troff output of pic is device-independent. The -T option is therefore redundant. All

numbers are taken to be in inches; numbers are never interpreted to be in troff machine

units.

Objects can have an aligned attribute. This will only work if the postprocessor is grops. Any

text associated with an object having the aligned attribute will be rotated about the center of

the object so that it is aligned in the direction from the start point to the end point of the

object. Note that this attribute will have no effect for objects whose start and end points are

coincident.

In places where nth is allowed ‘expr’th is also allowed. Note that ’th is a single token: no

space is allowed between the ’ and the th. For example,

 for i = 1 to 4 do {
 line from ‗i‘th box.nw to ‗i+1‘th box.se
}

CONVERSION
To obtain a stand-alone picture from a pic file, enclose your pic code

with .PS and .PE requests; roff configuration commands may be added at the

beginning of the file, but no roff text.

296

It is necessary to feed this file into groff without adding any page information, so you
must check which .PS and .PE requests are actually called. For example, the mm
macro package adds a page number, which is very annoying. At the moment, calling
standard groff without any macro package works. Alternatively, you can define your
own requests, e.g. to do nothing:

.de PS

..

.de PE

..

groff itself does not provide direct conversion into other graphics file formats. But there
are lots of possibilities if you first transform your picture into PostScript® format using
the groff option -Tps. Since this ps-file lacks BoundingBox information it is not very
useful by itself, but it may be fed into other conversion programs, usually
named ps2other or pstoother or the like. Moreover, the PostScript
interpreter ghostscript (gs) has built-in graphics conversion devices that are called
with the option

gs -sDEVICE=<devname>

Call gs --help

for a list of the available devices.

As the Encapsulated PostScript File Format EPS is getting more and more important,
and the conversion wasn‘t regarded trivial in the past you might be interested to know
that there is a conversion tool named ps2eps which does the right job. It is much better
than the tool ps2epsi packaged with gs.

For bitmapped graphic formats, you should use pstopnm; the resulting
(intermediate) PNM file can be then converted to virtually any graphics format using the
tools of the netpbm package .

FILES

Tag Description

 /usr/share/groff/1.18.1.1/tmac/pic.tmac Example definitions of

the PS and PE macros.

297

Debugger tools: Dbx, Adb, Sdb, Strip and Ctrace

Dbx

Provides an environment to debug and run programs under the operating system.

Syntax

dbx [-a ProcessID] [-c CommandFile] [-d NestingDepth] [-I Directory] [-
E DebugEnvironment] [-k] [-u] [-F] [-r] [-x] [ObjectFile [CoreFile]]

Description

The dbx command provides a symbolic debug program for C, C++, Pascal, and
FORTRAN programs, allowing you to carry out operations such as the following:

 Examine object and core files.
 Provide a controlled environment for running a program.
 Set breakpoints at selected statements or run the program one line at a time.
 Debug using symbolic variables and display them in their correct format.

The ObjectFile parameter is an object (executable) file produced by a compiler. Use
the -g (generate symbol table) flag when compiling your program to produce the
information the dbx command needs.

Note: The -g flag of the cc command should be used when the object file is compiled. If

the -g flag is not used or if symbol references are removed from the xcoff file with

the strip command, the symbolic capabilities of the dbx command are limited.

If the -c flag is not specified, the dbx command checks for a .dbxinit file in the
user's $HOME directory. It then checks for a .dbxinit file in the user's current directory.
If a .dbxinit file exists in the current directory, that file overrides the .dbxinit file in the
user's $HOME directory. If a .dbxinit file exists in the user's $HOME directory or current
directory, that file's subcommands run at the beginning of the debug session. Use an
editor to create a .dbxinit file.

If ObjectFile is not specified, then dbx asks for the name of the object file to be
examined. The default is a.out. If the core file exists in the current directory or
a CoreFile parameter is specified, then dbx reports the location where the program
faulted. Variables, registers, and memory held in the core image may be examined until
execution of ObjectFile begins. At that point the dbx debug program prompts for
commands.

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/figures/cmds235.jpg
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A2699110
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A2699111
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A22F0e7d
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A2699112
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A2699112mkm
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A2699112mkm
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A2699113
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A089982
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#nZ150flyn
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A2699114
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#wzFBg31ddoug
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds5/strip.htm#A254B9ac39
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/aixprggd/genprogc/dbx_customizing_debug_envir.htm#A30096a0

298

Expression Handling

The dbx program can display a wide range of expressions. You can specify
expressions in the dbx debug program with a common subset of C and Pascal syntax,
with some FORTRAN extensions.

The following operators are valid in the debug program:

* (asterisk) or ^ (caret) Denotes indirection or pointer dereferencing.

[] (brackets) or () (parentheses) Denotes subscript array expressions.

. (period) Use this field reference operator with pointers and

structures. This makes the C operator -> (arrow)

unnecessary, although it is allowed.

& (ampersand) Gets the address of a variable.

.. (two periods) Separates the upper and lower bounds when

specifying a subsection of an array. For

example: n[1..4].

The following types of operations are valid in expressions in the debug program:

Algebraic =, -, *, / (floating division), div (integral division), mod, exp (exponentiation)

Bitwise -, I, bitand, xor, ~. <<, >>

Logical or, and, not, II, &&

Comparison <, >, <=, >=, < > or !=, = or ==

Other (typename),sizeof

Logical and comparison expressions are allowed as conditions in stop and trace.

Expression types are checked. You override an expression type by using a renaming or
casting operator. The three forms of type renaming
are Typename(Expression), Expression|Typename, and (Typename) Expression. The
following is an example where the x variable is an integer with value 97:

(dbx) print x

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009877
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009c3b

299

97
(dbx) print char (x), x \ char, (char) x, x
'a' 'a' 'a' 97

Command Line Editing

The dbx commands provides a command line editing feature similar to those provide by
Korn Shell. vi mode provides vi-like editing features, while emacs mode gives you
controls similar to emacs.

These features can be turned on by using dbx subcommand set -o or set edit. To turn
on vi-style command-line editing, you would type the subcommand set edit vi or set -o
vi.

You can also use the EDITOR environment variable to set the editing mode.

The dbx command saves commands entered to a history file .dbxhistory. If
the DBXHISTFILE environment variable is not set, the history file used
is $HOME/.dbxhistory.

By default, dbx saves the text of the last 128 commands entered.
The DBXHISTSIZE environment variable can be used to increase this limit.

Flags

-a ProcessID Attaches the debug program to a process that is running. To

attach the debug program, you need authority to use

the kill command on this process. Use the ps command to

determine the process ID. If you have permission,

the dbx program interrupts the process, determines the full name

of the object file, reads in the symbolic information, and prompts

for commands.

-c CommandFile Runs the dbx subcommands in the file before reading from

standard input. The specified file in the $HOME directory is

processed first; then the file in the current directory is processed.

The command file in the current directory overrides the command

file in the $HOME directory. If the specified file does not exist in

either the $HOME directory or the current directory, a warning

message is displayed. The source subcommand can be used

once the dbx program is started.

-d NestingDepth Sets the limit for the nesting of program blocks. The default

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#latestuff
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#latestuff
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009e7f

300

nesting depth limit is 25.

-E DebugEnvironment Specifies the environment variable for the debug program.

-F Can be used to turn off the lazy read mode and make

the dbx command read all symbols at startup time. By default,

lazy reading mode is on: it reads only required symbol table

information on initiation of dbx session. In this mode, dbx will not

read local variables and types whose symbolic information has

not been read. Therefore, commands such as whereis i may not

list all instances of the local variable i in every function.

-I Directory (Uppercase i) Includes directory specified by

the Directory variable in the list of directories searched for source

files. The default is to look for source files in the following

directories:

 The directory the source file was located in when it was
compiled. This directory is searched only if the compiler
placed the source path in the object.

 The current directory.
 The directory where the program is currently located.

-k Maps memory addresses; this is useful for kernel debugging.

-r Runs the object file immediately. If it terminates successfully,

the dbx debug program is exited. Otherwise, the debug program

is entered and the reason for termination is reported.

Note: Unless -r is specified, the dbx command prompts the user

and waits for a command.

-u Causes the dbx command to prefix file name symbols with an @

(at sign). This flag reduces the possibility of ambiguous symbol

names.

-x Prevents the dbx command from stripping _ (trailing underscore

) characters from symbols originating in FORTRAN source code.

This flag allows dbx to distinguish between symbols which are

identical except for an underscore character, such

as xxx and xxx_.

301

Examples

1. The following example explains how to start the dbx debug program
simultaneously with a process. The example uses a program called samp.c. This
C program is first compiled with the -g flag to produce an object file that includes
symbolic table references. In this case, the program is named samp:

$ cc -g samp.c -o samp

When the program samp is run, the operating system reports a bus error and

writes a core image to your current working directory as follows:

$ samp
Bus Error - core dumped

To determine the location where the error occurred, enter:

$ dbx samp

The system returns the following message:

dbx version 3.1
Type 'help' for help.
reading symbolic information . . . [
using memory image in core]
 25 x[i] = 0;
(dbx) quit

2. This example explains how to attach dbx to a process. This example uses the
following program, looper.c:

3. main()
4. {
5. int i,x[10];
6.
7. for (i = 0; i < 10;);

}

The program will never terminate because i is never incremented.

Compile looper.c with the -g flag to get symbolic debugging capability:

$ cc -g looper.c -o looper

Run looper from the command line and perform the following steps to

attach dbx to the program while it is running:

302

a. To attach dbx to looper, you must determine the process ID. If you did
not run looper as a background process, you must have another Xwindow
open. From this Xwindow , enter:

ps -u UserID

where UserID is your login ID. All active processes that belong to you are

displayed as follows:

PID TTY TIME COMMAND
68 console 0:04 sh
467 lft3 10:48 looper

In this example the process ID associated with looper is 467.

b. To attach dbx to looper, enter:

$ dbx -a 467

The system returns the following message:

Waiting to attach to process 467 . . .
Successfully attached to /tmp/looper.
dbx is initializing
Type 'help' for help.
reading symbolic information . . .

attached in main at line 5
5 for (i = 0; i < 10;);
(dbx)

You can now query and debug the process as if it had been originally
started with dbx.

8. To add directories to the list of directories to be searched for the source file of an
executable file objefile, you can enter:

9. $dbx -I /home/user/src -I /home/group/src
objfile

The use subcommand may be used for this function once dbx is started.
The use command resets the list of directories, whereas the -I flag adds a
directory to the list.

10. To use the -r flag, enter:

$ dbx -r samp

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009c0b

303

The system returns the following message:

Entering debug program . . .
dbx version 3.1
Type 'help' for help.
reading symbolic information . . .
bus error in main at line 25
 25 x[i] = 0;
(dbx) quit

The -r flag allows you to examine the state of your process in memory even
though a core image is not taken.

11. To specify the environment variables for the debug program, enter:

dbx -E LIBPATH=/home/user/lib -E LANG=Ja_JP objfile

dbx Subcommands

Note: The subcommands can only be used while running the dbx debug program.

/ Searches forward in the current source file for a pattern.

? Searches backward in the current source file for a pattern.

alias Creates aliases for dbx subcommands.

assign Assigns a value to a variable.

attribute Displays information about all or selected attributes objects.

call Runs the object code associated with the named procedure or

function.

case Changes how the dbx debug program interprets symbols.

catch Starts trapping a signal before that signal is sent to the application

program.

clear Removes all stops at a given source line.

cleari Removes all breakpoints at an address.

condition Displays information about all or selected condition variables.

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009e4b
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009e65
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009d3f
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A300989d
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A792Aia3thom
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009b6c
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009a84
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009b87
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009ba5
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009d24
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#r52Ai14bthom

304

cont Continues application program execution from the current stopping

point until the program finishes or another breakpoint is encountered.

delete Removes the traces and stops corresponding to the specified event

numbers.

detach Continues execution of application and exits the debug program.

display memory Displays the contents of memory.

down Moves the current function down the stack.

dump Displays the names and values of variables in the specified

procedure.

edit Starts an editor on the specified file.

file Changes the current source file to the specified file.

func Changes the current function to the specified procedure or function.

goto Causes the specified source line to be the next line run.

gotoi Changes the program counter address.

help Displays help information for dbx subcommands or topics.

ignore Stops trapping a signal before that signal is sent to the application

program.

list Displays lines of the current source file.

listi Lists instructions from the application program.

map Displays information about load characteristics of the application.

move Changes the next line to be displayed.

multproc Enables or disables multiprocess debugging.

mutex Displays information about all or selected mutexes.

next Runs the application program up to the next source line.

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A052698bcla
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A052698bclc
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A052698bclF
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A052698bclH
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009a4b
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009aa6
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009afd
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009b1b
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009b36
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009769
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009d0c
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A30097d6
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009e2d
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009d5d
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009cea
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A23F014f0
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009bf3
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009781
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#l32Ai30athom
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A300979d

305

nexti Runs the application program up to the next machine instruction.

print Prints the value of an expression or runs a procedure and prints the

return code of that procedure.

prompt Changes the dbx command prompt.

quit Stops the dbx debug program.

registers Displays the values of all general-purpose registers, system-control

registers, floating-point registers, and the current instruction register.

rerun Begins execution of an application with the previous arguments.

return Continues running the application program until a return to the

specified procedure is reached.

rwlock Displays information about the rwlocks.

run Begins running an application.

screen Opens an Xwindow for dbx command interaction.

set Defines a value for a dbx debug program variable.

sh Passes a command to the shell to be run.

skip Continues running the application program from the current stopping

point.

source Reads dbx subcommands from a file.

status Displays the active trace and stop subcommands.

step Runs one source line.

stepi Runs one machine instruction.

stop Stops running of the application program.

stopi Sets a stop at a specified location.

thread Displays and controls threads.

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009b51
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009a63
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009c23
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009bdd
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009c7b
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009729
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A30096e9
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#0128981140tmh
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009704
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009caf
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009db2
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009c99
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A300974e
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009e7f
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009841
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A300985c
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009e95
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009877
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009cc6
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#p62Ai59thom

306

trace Prints tracing information.

tracei Turns on tracing.

unalias Removes an alias.

unset Deletes a variable.

up Moves the current function up the stack.

use Sets the list of directories to be searched when looking for source

files.

whatis Displays the declaration of application program components.

where Displays a list of active procedures and functions.

whereis Displays the full qualifications of all the symbols whose names match

the specified identifier.

which Displays the full qualification of the given identifier.

/ Subcommand

/ [RegularExpression [/]]

The / subcommand searches forward in the current source file for the pattern specified
by the RegularExpression parameter. Entering the / subcommand with no arguments
causes dbx to search forward for the previous regular expression. The search wraps
around the end of the file.

Examples

1. To search forward in the current source file for the number 12, enter:

/ 12

2. To repeat the previous search, enter:

/

See the ? (search) subcommand and the regcmp subroutine.

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009c3b
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009c5b
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009d98
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009d7e
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009a33
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009c0b
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A30097b8
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009ac4
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009a1b
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A30098b9
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009e65
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/libs/basetrf2/regcmp.htm#A353F91

307

? Subcommand

? [RegularExpression [?]]

The ? subcommand searches backward in the current source file for the pattern
specified by the RegularExpression parameter. Entering the ? subcommand with no
arguments causes the dbx command to search backwards for the previous regular
expression. The search wraps around the end of the file.

Examples

1. To search backward in the current source file for the letter z, enter:

?z

2. To repeat the previous search, enter:

?

See the / (search) subcommand and the regcmp subroutine.

alias Subcommand

alias [Name [[(Arglist)] String | Subcommand]]

The alias subcommand creates aliases for dbx subcommands. The Name parameter is
the alias being created. The String parameter is a series of dbx subcommands that,
after the execution of this subcommand, can be referred to by Name. If
the alias subcommand is used without parameters, it displays all current aliases.

Examples

1. To substitute rr for rerun, enter:

alias rr rerun

2. To run the two subcommands print n and step whenever printandstep is typed at
the command line, enter:

alias printandstep "print n; step"

3. The alias subcommand can also be used as a limited macro facility. For
example:

4. (dbx) alias px(n) "set $hexints; print n; unset $hexints"
5. (dbx) alias a(x,y) "print symname[x]->symvalue._n_n.name.Id[y]"
6. (dbx) px(126)

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds2/dbx.htm#A3009e4b
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/libs/basetrf2/regcmp.htm#A353F91

308

0x7e

In this example, the alias px prints a value in hexadecimal without permanently
affecting the debugging environment.

assign Subcommand

assign Variable=Expression

The assign subcommand assigns the value specified by the Expression parameter to
the variable specified by the Variable parameter.

Examples

1. To assign a value of 5 to the x variable, enter:

assign x = 5

2. To assign the value of the y variable to the x variable, enter:

assign x = y

3. To assign the character value 'z' to the z variable, enter:

assign z = 'z'

4. To assign the boolean value false to the logical type variable B, enter:

assign B = false

5. To assign the "Hello World" string to a character pointer Y, enter:

assign Y = "Hello World"

6. To disable type checking, set the dbx debug program variable $unsafeassign by
entering:

set $unsafeassign

See Displaying and Modifying Variables.

attribute Subcommand

attribute [AttributeNumber ...]

https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/aixprggd/genprogc/examining_prog_data.htm#A30095f3

309

The attribute subcommand displays information about the user thread, mutex, or
condition attributes objects defined by the AttributeNumber parameters. If no
parameters are specified, all attributes objects are listed.

For each attributes object listed, the following information is displayed:

attr Indicates the symbolic name of the attributes object, in the

form $aAttributeNumber.

obj_addr Indicates the address of the attributes object.

type Indicates the type of the attributes object; this can be thr, mutex, or cond for

user threads, mutexes, and condition variables respectively.

state Indicates the state of the attributes object. This can be valid or inval.

stack Indicates the stacksize attribute of a thread attributes object.

scope Indicates the scope attribute of a thread attributes object. This determines the

contention scope of the thread, and defines the set of threads with which it

must contend for processing resources. The value can be sys or pro for

system or process contention scope.

prio Indicates the priority attribute of a thread attributes object.

sched Indicates the schedpolicy attribute of a thread attributes object. This attribute

controls scheduling policy, and can be fifo , rr (round robin), or other.

p-shar Indicates the process-shared attribute of a mutex or condition attribute object.

A mutex or condition is process-shared if it can be accessed by threads

belonging to different processes. The value can be yes or no.

protocol Indicates the protocol attribute of a mutex. This attribute determines the effect

of holding the mutex on a thread's priority. The value can be no_prio, prio,

or protect.

Adb

Adb is something that many Android enthusiasts use, but its full potential is often

overlooked. ADB stands for ―Android Debug Bridge,‖ and it is a command line tool that

is used to communicate with a smartphone, tablet, smartwatch, set-top box, or any

other device that can run the Android operating system (even an emulator). Specific

310

commands are built into the ADB binary and while some of them work on their own,

most are commands we send to the connected device.

ADB allows you to do things on an Android device that may not be suitable for everyday

use, yet can greatly benefit your user or developer experience. For example, you can

install apps outside of the Play Store, debug apps, access hidden features, and bring up

a Unix shell so you can issue commands directly on the device. So for security reasons,

Developer Options need to be unlocked and you need to have USB Debugging Mode

enabled as well. Not only that, but you also need to authorize USB Debugging access to

the specific PC that you‘re connected to with a USB cable.

What is ADB?

Since ADB is a client-server program, there are three components that make up the

entire process. First, we have what Google calls the Client, the computer you have

connected to your Android device. It‘s from this computer that we are sending

commands to our device through the USB cable (and wirelessly as well in some cases).

Next up is the daemon (also known as adbd), and this is a service that is currently

running on both the computer as well as the Android device and allows the latter to

accept and execute commands.

The last of the three components of ADB is called the Server and this is a piece of

software that actually manages the communication between the client and the daemon.

So after you type in an ADB command in a command prompt, PowerShell, or a terminal,

it‘s the server that is running as a background process on your computer that sends this

command to the daemon. All three components work together to give you this type of

access to your smartphone, tablet, smartwatch, and more.

How Does ADB Work?

Because there are three pieces that makeup ADB (the Client, Daemon, and the Server),

this requires certain pieces to be up and running in the first place. So if you have freshly

booted the computer (and you don‘t have it setup to start the daemon on boot), then you

will need it to be running before any communication can be sent to the Android device.

You‘ll see this the following message in the command prompt or terminal, as it will

check to make sure the daemon is running.

If the daemon isn‘t running, then it will start the process and tell you which local TCP

port it has been started on. Once that ADB service has been started, it will continue to

listen to that specific port for commands that have been sent by the ADB client. It will

then set up connections to all running devices which are attached to the computer

311

(including emulators). This is the moment where you‘ll receive the authorization request

on the Android device if the computer hasn‘t been authorized in the past.

Sdb

The Smart Development Bridge (SDB) is a device management tool included in the
Tizen SDK:

 The SDB manages multiple device connections. You can list connected devices
and send a command to a specific device with a serial number that is created by
the SDB.

 The SDB supplies basic commands for application development, such as file
transfer, remote shell command, port forwarding for a debugger, viewing,
filtering, and controlling device log output.

 The SDB also includes the Emulator.

To use the SDB:

1. To use the SDB in a target device, set the device to the SDB mode by going
to Settings > More system settings > Developer options > USB debugging in
the device menu.

2. Run the SDB with a shell using the following command:

$ sdb [option] <command> [parameters]

Where [option] can be:

o -d: Directs the command to the only connected USB device and return an
error if more than one USB device is present.

o -e: Direct the command to the only running Emulator and return an error if
more than one Emulator is present.

o -s <serial number>: Direct the command to the USB device or Emulator
with the defined serial number.

If multiple Emulator or device instances are running, you need to specify a
target instance in the SDB command.

o devices: List all connected devices.

Before issuing SDB commands, it is helpful to know which Emulator or
device instances are connected to the SDB server. In response to this
command option, the SDB prints the serial number (a string created by the
SDB to uniquely identify an Emulator or device instance) and connection
status for each connected device. The connection status can be offline

https://developer.tizen.org/dev-guide/2.4/org.tizen.devtools/html/common_tools/smart_dev_bridge.htm#log

312

(the instance is not connected to the SDB or is not responding) or device
(the instance is connected to the SDB server).

The following snippet shows an example of the command output:

$ sdb devices

List of devices attached

emulator-26100 device myemulator1

emulator-26200 device myemulator2

$

For more information about the available commands and their parameters
(<command> [parameters]), see SDB Commands.

3. To stop the SDB server, use the kill-server command.

If the SDB does not respond to a command, try to terminate and restart it to
resolve the problem. You can restart the server after stopping it by issuing any
SDB command.

SDB Commands

The following table lists the commands available for the Smart Development Bridge
(SDB).

Table: SDB commands

Command Description

sdb
devices

List all connected devices.

sdb
connect
<host>[:<p
ort>]

Connect to a device through TCP/IP.

sdb
disconnect
<host>[:<p
ort>]

Disconnect from a TCP/IP device.

Port 26101 is used by default if no port number is specified. Using
this command with no additional arguments disconnects from all
connected TCP/IP devices.

sdb push
<local>
<remote> [-
with-utf8]

Copy a file or directory recursively to the device's data file.

The <local> and <remote> parameters refer to the paths to the
target files or directories on the development machine (local) and
the device instance (remote). The following command shows an

https://developer.tizen.org/dev-guide/2.4/org.tizen.devtools/html/common_tools/smart_dev_bridge.htm#command

313

example:

The [-with-utf8] parameter creates the remote file with the UTF-8
character encoding.

$ sdb push data.txt /opt/apps/org.tizen.hellotizen/data/data.txt

sdb pull
<remote>
[<local>]

Copy a file or directory recursively from the device's data file.

The <remote> and <local> parameters refer to the paths to the
target files or directories on the device instance (remote) and the
development machine (local). The following command shows an
example:

$ sdb pull /opt/apps/org.tizen.hellotizen/data/data.txt data.txt

sdb shell Run a remote shell interactively by dropping into a remote shell
on an Emulator or device instance.

To exit the remote shell, press Ctrl+D or use the exit command to
end the shell session.

sdb shell
<command
>

Run a remote shell command without entering the SDB remote
shell on the device. The following commands are available:

ls, rm, mv, cd, mkdir, cp, touch, echo, tar, grep, cat, chmod, rpm, f
ind, uname, netstat, and killall

sdb dlog
[option]
[<filter-
spec>]

View and follow the content of the device log buffers.

To view the log output in your development computer or from a
remote SDB shell, use the sdb dlog or dlogutil command,
respectively.

The [<filter-spec>] parameter defines the tag of interest (the
system component from which the message originates) and the
minimum level of priority to report for that tag. The format
is tag:priority, and multiple filters must be separated with a space.
The available priorities (from lowest to highest)
are V (Verbose), D (Debug), I (Info), W (Warning), E (Error),
and F (Fatal).

For example, to view all log messages of the info priority in
addition to the MyApp tag messages of the debug priority, use the
following command:

314

$ sdb dlog MyApp:D *:E

For more information about the command options,
see Controlling Log Output.

sdb install
<path_to_t
pk>

Push the tpk package file to the device and install it.

The <path_to_tpk> parameter defines to the path to the tpk file.
The following command shows an example:

$ sdb install /home/tizen/ko983dw33q-1.0.0-i386.tpk

sdb
uninstall
<appid>

Uninstall the application from the device.

The <appid> parameter defines the application ID of the
application. The following command shows an example:

$ sdb uninstall ko983dw33q

sdb forward
<local>
<remote>

Set up arbitrary port forwarding of requests from a specific host
port to a different port on a device instance.

The format for the <local> and <remote> parameters
is tcp:<port>. The following example shows how to forward
requests from host port 26102 to device port 9999:

$ sdb forward tcp:26102 tcp:9999

After setting up port forwarding, development tools between the
device and host can work remotely. For example, gdb in a
host/gdbserver in a device, and gdbserver in a device open with
the tcp:9999 port:

$ sdb shell gdbserver:9999 hellotizen

gdb in a host connects to localhost:26102

$ gdb hellotizen ... (gdb) target remote localhost:26102

sdb help Show the help message.

sdb version Show the version number.

sdb start-
server

Start the server if it is not running.

https://developer.tizen.org/dev-guide/2.4/org.tizen.devtools/html/common_tools/smart_dev_bridge.htm#log

315

sdb kill-
server

Stop the server if it is running.

sdb get-
state

Print the target device connection status: device of offline.

sdb get-
serialno

Print the serial number of the target device.

sdb status-
window

Continuously print the connection status for a specified device.

sdb root
<on|off>

Switch between the root and developer account mode.

The on value sets the root mode and the off value sets the
developer account mode.

Controlling Log Output

The following list defines the available options for the sdb dlog and logutil commands:

 -b <buffer>

Alternate log buffer. The main buffer is used as a default buffer.

 -c

Clear the entire log and exit.

 -d

Dump the log and exit.

 -f <filename>

Write the log to the <filename> file. The default file is stdout.

 -g

Print the size of the specified log buffer and exit.

 -n <count>

Set the maximum number of rotated logs to <count>. The default value is 4. This
option also requires the -r option.

 -r <Kbytes>

Rotate the log file every <Kbytes> of output. The default value is 16. This option
also requires the -f option.

 -s

Set the default filter to silent.

 -v <format>

Set the output format for log messages.

316

You can define which metadata fields (such as tag and priority) are included in
log messages by setting one of the following output formats:

o brief: Displays the priority/tag and PID of the originating process. This is
the default format.

o process: Displays the PID only.

o tag: Displays the priority/tag only.

o thread: Displays the process:thread and priority/tag only.

o raw: Displays the raw log message, with no other metadata fields.

o time: Displays the date, invocation time, priority/tag, and PID of the
originating process.

o long: Displays all metadata fields and separate messages with a blank
line.

Strip

strip - Discard symbols from object files.

SYNOPSIS

strip [-F bfdname |--target=bfdname]

[-I bfdname |--input-target=bfdname]

[-O bfdname |--output-target=bfdname]

[-s|--strip-all]

[-S|-g|-d|--strip-debug]

[-K symbolname |--keep-symbol=symbolname]

[-N symbolname |--strip-symbol=symbolname]

[-w|--wildcard]

[-x|--discard-all] [-X |--discard-locals]

[-R sectionname |--remove-section=sectionname]

[-o file] [-p|--preserve-dates]

[--keep-file-symbols]

[--only-keep-debug]

[-v |--verbose] [-V|--version]

[--help] [--info]

objfile...

https://developer.tizen.org/dev-guide/2.4/org.tizen.devtools/html/common_tools/smart_dev_bridge.htm#filter

317

DESCRIPTION

GNU strip discards all symbols from object files objfile. The list of object files may

include archives. At least one object file must be given.

strip modifies the files named in its argument, rather than writing modified copies
under different names.

OPTIONS

Tag Description

-F bfdname

--target=bfdname Treat the original objfile as a file with the object code

format bfdname, and rewrite it in the same format.

--help Show a summary of the options to strip and exit.

--info Display a list showing all architectures and object formats available.

-I bfdname

--input-

target=bfdname

Treat the original objfile as a file with the object code

format bfdname.

-O bfdname

--output-

target=bfdname

Replace objfile with a file in the output format bfdname.

-R sectionname

--remove-

section=sectionname

Remove any section named sectionname from the output file. This

option may be given more than once. Note that using this option

inappropriately may make the output file unusable.

318

-s

--strip-all Remove all symbols.

-g

-S

-d

--strip-debug Remove debugging symbols only.

--strip-unneeded Remove all symbols that are not needed for relocation processing.

-K symbolname

--keep-

symbol=symbolname

When stripping symbols, keep symbol symbolname even if it would

normally be stripped. This option may be given more than once.

-N symbolname

--strip-

symbol=symbolname

Remove symbol symbolname from the source file. This option may

be given more than once, and may be combined with strip options

other than -K.

-o file Put the stripped output in file, rather than replacing the existing file.

When this argument is used, only one objfile argument may be

specified.

-p

--preserve-dates Preserve the access and modification dates of the file.

-w

319

--wildcard Permit regular expressions in symbolnames used in other command

line options. The question mark (?), asterisk (*), backslash (\) and

square brackets ([]) operators can be used anywhere in the symbol

name. If the first character of the symbol name is the exclamation

point (!) then the sense of the switch is reversed for that symbol. For

example:

 -w -K !foo -K fo*

would cause strip to only keep symbols that start with the letters fo,
but to discard the symbol foo.

-x

--discard-all Remove non-global symbols.

-X

--discard-locals Remove compiler-generated local symbols. (These usually start

with L or ..)

--keep-file-symbols When stripping a file, perhaps with --strip-debug or --strip-

unneeded, retain any symbols specifying source file names, which

would otherwise get stripped.

--only-keep-debug Strip a file, removing any sections that would be stripped by --strip-

debug and leaving the debugging sections.

The intention is that this option will be used in conjunction with --
add-gnu-debuglink to create a two part executable. One a
stripped binary which will occupy less space in RAM and in a
distribution and the second a debugging information file which is
only needed if debugging abilities are required. The suggested
procedure to create these files is as follows:

Tag Description

1.<Link the

executable as

foo then...

320

normal. Assuming

that is is called>

1.<Run objcopy --

only-keep-debug

foo foo.dbg to>

create a file containing the debugging info.

1.<Run objcopy --

strip-debug foo to

create a>

stripped executable.

1.<Run objcopy --

add-gnu-

debuglink=foo.dbg

foo>

to add a link to the debugging info into the

stripped executable.

Note - the choice of .dbg as an extension for the debug info file is
arbitrary. Also the --only-keep-debug step is optional. You could
instead do this:

Tag Description

1.<Link the executable

as normal.>

1.<Copy foo to foo.full>

1.<Run strip --strip-

debug foo>

1.<Run objcopy --add-

gnu-debuglink=foo.full

foo>

ie the file pointed to by the --add-gnu-debuglink can be the full
executable. It does not have to be a file created by the --only-keep-
debug switch.

Note - this switch is only intended for use on fully linked files. It

321

does not make sense to use it on object files where the debugging
information may be incomplete. Besides the gnu_debuglink feature
currently only supports the presence of one filename containing
debugging information, not multiple filenames on a one-per-object-
file basis.

-V

--version Show the version number for strip.

-v

--verbose Verbose output: list all object files modified. In the case of

archives, strip -v lists all members of the archive.

@file Read command-line options from file. The options read are inserted

in place of the original @file option. If file does not exist, or cannot

be read, then the option will be treated literally, and not removed.

Options in file are separated by whitespace. A whitespace
character may be included in an option by surrounding the entire
option in either single or double quotes. Any character (including a
backslash) may be included by prefixing the character to be
included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

Ctrace

CTrace is a fast, lightweight trace/debug C library. It was specifically written for use in a
multi-threaded application, though it will work just fine in a single threaded C application.
A trace/debug library has an interface of macros or functions which outputs the contents
of program variables as the application is running. The trace calls may be made at user-
defined levels. It may also be required to have trace functions only called on a particular
thread or logical unit of the application.

Isn't that what debuggers are for? Well, yes, though debuggers can be kind of tricky to
use when an application is running across multiple threads. Also, once an application is
deployed, for example on an embedded system, using debuggers becomes impractical.
In this case, a remote protocol could turn tracing on for parts of the application, and the
results may be returned either as a stream, or output to a file on the remote system, and
collected via ftp.

322

CTrace Features

 Well documented

 Fast, ligthweight tracing

 Support for turning tracing on and off as required

 Support for turning trace levels on and off independently

 Support for adding and removing trace threads

 Ability to turn individual thread traces on and off in isolation

 Ability to trace logical software units in isolation

CTrace is currently out there in the BSD License. I switched to this license 'cos as I
understand the license, it enables the library to be used commercially with no
restrictions.

